Continuity of the mean values of BMO functions and Calderon-Zygmund properties of certain singular integrals

K. Yabuta
{"title":"Continuity of the mean values of BMO functions and Calderon-Zygmund properties of certain singular integrals","authors":"K. Yabuta","doi":"10.5036/BFSIU1968.15.1","DOIUrl":null,"url":null,"abstract":"In this note we shall show that certain bilinear singular integrals T(a,f) with symmetric property in some sense are bounded bilinear operators from BMO× Lp into Lp, more precisely, for any BMO function a the operator T(a,・) is a Calderon-Zygmund singular integral operator (Theorems 1 and 2). These results are, in a sense, extensions of the relating results in Baishansky and Coifman [1]. To prove the above, the Holder continuity of the mean values of BMO functions","PeriodicalId":141145,"journal":{"name":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1983-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/BFSIU1968.15.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this note we shall show that certain bilinear singular integrals T(a,f) with symmetric property in some sense are bounded bilinear operators from BMO× Lp into Lp, more precisely, for any BMO function a the operator T(a,・) is a Calderon-Zygmund singular integral operator (Theorems 1 and 2). These results are, in a sense, extensions of the relating results in Baishansky and Coifman [1]. To prove the above, the Holder continuity of the mean values of BMO functions
BMO函数均值的连续性及某些奇异积分的Calderon-Zygmund性质
本文将证明某些双线性奇异积分T(a,f)在某种意义上是由bmox Lp到Lp的有界双线性算子,更确切地说,对于任意BMO函数a,算子T(a,·)是Calderon-Zygmund奇异积分算子(定理1和定理2)。这些结果在某种意义上是Baishansky和Coifman[1]中有关结果的推广。为了证明上述结论,本文给出了BMO函数均值的Holder连续性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信