Vehicle tracking using on-line fusion of color and shape features

Kai She, G. Bebis, Haisong Gu, Ronald Miller
{"title":"Vehicle tracking using on-line fusion of color and shape features","authors":"Kai She, G. Bebis, Haisong Gu, Ronald Miller","doi":"10.1109/ITSC.2004.1398993","DOIUrl":null,"url":null,"abstract":"A real-time on-road vehicle tracking method is presented in this work. The tracker builds statistical models for the target in color and shape feature spaces and continuously evaluates each of the feature spaces by computing the similarity score between the probabilistic distributions of the target and the model. Based on the similarity scores, the final location of the target is determined by fusing the potential locations found in different feature spaces together. The proposed method has been evaluated on real data, illustrating good performance.","PeriodicalId":239269,"journal":{"name":"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2004.1398993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

Abstract

A real-time on-road vehicle tracking method is presented in this work. The tracker builds statistical models for the target in color and shape feature spaces and continuously evaluates each of the feature spaces by computing the similarity score between the probabilistic distributions of the target and the model. Based on the similarity scores, the final location of the target is determined by fusing the potential locations found in different feature spaces together. The proposed method has been evaluated on real data, illustrating good performance.
利用颜色和形状特征的在线融合进行车辆跟踪
本研究提出了一种实时路面车辆跟踪方法。跟踪器在颜色和形状特征空间中为目标建立统计模型,并通过计算目标和模型的概率分布之间的相似性得分来持续评估每个特征空间。根据相似性得分,将不同特征空间中发现的潜在位置融合在一起,从而确定目标的最终位置。已在真实数据上对所提出的方法进行了评估,结果表明该方法性能良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信