CPrefMiner: An Algorithm for Mining User Contextual Preferences Based on Bayesian Networks

S. D. Amo, Marcos L. P. Bueno, Guilherme Alves, Nádia Félix F. da Silva
{"title":"CPrefMiner: An Algorithm for Mining User Contextual Preferences Based on Bayesian Networks","authors":"S. D. Amo, Marcos L. P. Bueno, Guilherme Alves, Nádia Félix F. da Silva","doi":"10.1109/ICTAI.2012.24","DOIUrl":null,"url":null,"abstract":"In this article we propose CPrefMiner, a mining technique for learning a Bayesian Preference Network (BPN) from a given sample of user choices. In our approach, user preferences are not static and may vary according to a multitude of user contexts. So, we name them Contextual Preferences. Contextual Preferences can be naturally expressed by a BPN. The method has been evaluated in a series of experiments executed on synthetic and real-world datasets and proved to be efficient to discover user contextual preferences.","PeriodicalId":155588,"journal":{"name":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","volume":"53 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2012.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this article we propose CPrefMiner, a mining technique for learning a Bayesian Preference Network (BPN) from a given sample of user choices. In our approach, user preferences are not static and may vary according to a multitude of user contexts. So, we name them Contextual Preferences. Contextual Preferences can be naturally expressed by a BPN. The method has been evaluated in a series of experiments executed on synthetic and real-world datasets and proved to be efficient to discover user contextual preferences.
基于贝叶斯网络的用户上下文偏好挖掘算法
在本文中,我们提出了CPrefMiner,这是一种从给定的用户选择样本中学习贝叶斯偏好网络(BPN)的挖掘技术。在我们的方法中,用户首选项不是静态的,可能会根据大量用户上下文而变化。因此,我们将它们命名为上下文偏好。上下文首选项可以由BPN自然地表示。该方法已经在合成数据集和真实世界数据集上进行了一系列实验,并被证明可以有效地发现用户的上下文偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信