S. D. Amo, Marcos L. P. Bueno, Guilherme Alves, Nádia Félix F. da Silva
{"title":"CPrefMiner: An Algorithm for Mining User Contextual Preferences Based on Bayesian Networks","authors":"S. D. Amo, Marcos L. P. Bueno, Guilherme Alves, Nádia Félix F. da Silva","doi":"10.1109/ICTAI.2012.24","DOIUrl":null,"url":null,"abstract":"In this article we propose CPrefMiner, a mining technique for learning a Bayesian Preference Network (BPN) from a given sample of user choices. In our approach, user preferences are not static and may vary according to a multitude of user contexts. So, we name them Contextual Preferences. Contextual Preferences can be naturally expressed by a BPN. The method has been evaluated in a series of experiments executed on synthetic and real-world datasets and proved to be efficient to discover user contextual preferences.","PeriodicalId":155588,"journal":{"name":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","volume":"53 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2012.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this article we propose CPrefMiner, a mining technique for learning a Bayesian Preference Network (BPN) from a given sample of user choices. In our approach, user preferences are not static and may vary according to a multitude of user contexts. So, we name them Contextual Preferences. Contextual Preferences can be naturally expressed by a BPN. The method has been evaluated in a series of experiments executed on synthetic and real-world datasets and proved to be efficient to discover user contextual preferences.