{"title":"MSE-ratio regret estimation with bounded data uncertainties","authors":"Yonina C. Eldar","doi":"10.5281/ZENODO.38180","DOIUrl":null,"url":null,"abstract":"We consider the problem of robust estimation of a deterministic bounded parameter vector x in a linear model. While in an earlier work, we proposed a minimax estimation approach in which we seek the estimator that minimizes the worst-case mean-squared error (MSE) difference regret over all bounded vectors x, here we consider an alternative approach, in which we seek the estimator that minimizes the worst-case MSE ratio regret, namely, the worst-case ratio between the MSE attainable using a linear estimator ignorant of x, and the minimum MSE attainable using a linear estimator that knows x. The rational behind this approach is that the value of the difference regret may not adequately reflect the estimator performance, since even a large regret should be considered insignificant if the value of the optimal MSE is relatively large.","PeriodicalId":347658,"journal":{"name":"2004 12th European Signal Processing Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 12th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.38180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of robust estimation of a deterministic bounded parameter vector x in a linear model. While in an earlier work, we proposed a minimax estimation approach in which we seek the estimator that minimizes the worst-case mean-squared error (MSE) difference regret over all bounded vectors x, here we consider an alternative approach, in which we seek the estimator that minimizes the worst-case MSE ratio regret, namely, the worst-case ratio between the MSE attainable using a linear estimator ignorant of x, and the minimum MSE attainable using a linear estimator that knows x. The rational behind this approach is that the value of the difference regret may not adequately reflect the estimator performance, since even a large regret should be considered insignificant if the value of the optimal MSE is relatively large.