Natural Language Inference with Self-Attention for Veracity Assessment of Pandemic Claims

M. Arana-Catania, E. Kochkina, A. Zubiaga, M. Liakata, R. Procter, Yulan He
{"title":"Natural Language Inference with Self-Attention for Veracity Assessment of Pandemic Claims","authors":"M. Arana-Catania, E. Kochkina, A. Zubiaga, M. Liakata, R. Procter, Yulan He","doi":"10.48550/arXiv.2205.02596","DOIUrl":null,"url":null,"abstract":"We present a comprehensive work on automated veracity assessment from dataset creation to developing novel methods based on Natural Language Inference (NLI), focusing on misinformation related to the COVID-19 pandemic. We first describe the construction of the novel PANACEA dataset consisting of heterogeneous claims on COVID-19 and their respective information sources. The dataset construction includes work on retrieval techniques and similarity measurements to ensure a unique set of claims. We then propose novel techniques for automated veracity assessment based on Natural Language Inference including graph convolutional networks and attention based approaches. We have carried out experiments on evidence retrieval and veracity assessment on the dataset using the proposed techniques and found them competitive with SOTA methods, and provided a detailed discussion.","PeriodicalId":382084,"journal":{"name":"North American Chapter of the Association for Computational Linguistics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Chapter of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.02596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a comprehensive work on automated veracity assessment from dataset creation to developing novel methods based on Natural Language Inference (NLI), focusing on misinformation related to the COVID-19 pandemic. We first describe the construction of the novel PANACEA dataset consisting of heterogeneous claims on COVID-19 and their respective information sources. The dataset construction includes work on retrieval techniques and similarity measurements to ensure a unique set of claims. We then propose novel techniques for automated veracity assessment based on Natural Language Inference including graph convolutional networks and attention based approaches. We have carried out experiments on evidence retrieval and veracity assessment on the dataset using the proposed techniques and found them competitive with SOTA methods, and provided a detailed discussion.
基于自关注的自然语言推断用于流行病索赔的真实性评估
我们介绍了从数据集创建到基于自然语言推理(NLI)开发新方法的自动化准确性评估的综合工作,重点关注与COVID-19大流行相关的错误信息。我们首先描述了新型PANACEA数据集的构建,该数据集由关于COVID-19的异构索赔及其各自的信息源组成。数据集构建包括检索技术和相似性测量方面的工作,以确保一组独特的声明。然后,我们提出了基于自然语言推理的自动准确性评估的新技术,包括图卷积网络和基于注意力的方法。我们使用所提出的技术在数据集上进行了证据检索和准确性评估的实验,发现它们与SOTA方法具有竞争力,并进行了详细的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信