Analysis of impact sound waveform by answer-in-weights neural network

H. Kanada, T. Ogawa, K. Mori, M. Sakata
{"title":"Analysis of impact sound waveform by answer-in-weights neural network","authors":"H. Kanada, T. Ogawa, K. Mori, M. Sakata","doi":"10.1109/SICE.2001.977861","DOIUrl":null,"url":null,"abstract":"A method to estimate the elastic moduli of composite material from the impact sound was proposed. For estimating the degree of fatigue of the material, it is important to detect long-term components as well as periodic components. We propose to use answer-in-weights networks for estimating the periodic and long-term components of the damping waveform, simultaneously. To show the effectiveness of the method, we performed simulations on the damping vibration data occurring due to the impact sound of the composite material.","PeriodicalId":415046,"journal":{"name":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2001.977861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method to estimate the elastic moduli of composite material from the impact sound was proposed. For estimating the degree of fatigue of the material, it is important to detect long-term components as well as periodic components. We propose to use answer-in-weights networks for estimating the periodic and long-term components of the damping waveform, simultaneously. To show the effectiveness of the method, we performed simulations on the damping vibration data occurring due to the impact sound of the composite material.
基于加权应答神经网络的冲击声波形分析
提出了一种利用冲击声估计复合材料弹性模量的方法。为了估计材料的疲劳程度,既要检测材料的长期疲劳成分,也要检测材料的周期性疲劳成分。我们建议使用加权回答网络来同时估计阻尼波形的周期性和长期分量。为了验证该方法的有效性,我们对复合材料冲击声引起的阻尼振动数据进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信