Properties of Malicious Social Bots

M. Kolomeets, A. Chechulin
{"title":"Properties of Malicious Social Bots","authors":"M. Kolomeets, A. Chechulin","doi":"10.31854/1813-324x-2023-9-1-94-104","DOIUrl":null,"url":null,"abstract":"The paper considers the ability to describe malicious bots using their characteristics, which can be the basis for building models for recognising bot parameters and qualitatively analysing attack characteristics in social networks. The following metrics are proposed using the characteristics of VKontakte social network bots as an example: trust, survivability, price, seller type, speed, and expert quality. To extract these metrics, an approach is proposed that is based on the methods of test purchases and the Turing test. The main advantage of this approach is that it proposes to extract features from the data obtained experimentally, thereby obtaining a more reasonable estimation than the expert approach. Also, an experiment on extracting metrics from malicious bots of the VKontakte social network using the proposed approach is described, and an analysis of the metrics' dependence is carried out. The experiment demonstrates the possibility of metrics extracting and analysis. In general, the proposed metrics and the approach to their extraction can become the basis for the transition from binary attack detection in social networks to a qualitative description of the attacker and his capabilities, as well as an analysis of the evolution of bots.","PeriodicalId":298883,"journal":{"name":"Proceedings of Telecommunication Universities","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Telecommunication Universities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31854/1813-324x-2023-9-1-94-104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers the ability to describe malicious bots using their characteristics, which can be the basis for building models for recognising bot parameters and qualitatively analysing attack characteristics in social networks. The following metrics are proposed using the characteristics of VKontakte social network bots as an example: trust, survivability, price, seller type, speed, and expert quality. To extract these metrics, an approach is proposed that is based on the methods of test purchases and the Turing test. The main advantage of this approach is that it proposes to extract features from the data obtained experimentally, thereby obtaining a more reasonable estimation than the expert approach. Also, an experiment on extracting metrics from malicious bots of the VKontakte social network using the proposed approach is described, and an analysis of the metrics' dependence is carried out. The experiment demonstrates the possibility of metrics extracting and analysis. In general, the proposed metrics and the approach to their extraction can become the basis for the transition from binary attack detection in social networks to a qualitative description of the attacker and his capabilities, as well as an analysis of the evolution of bots.
恶意社交机器人的属性
本文考虑了使用其特征来描述恶意机器人的能力,这可以成为构建识别机器人参数和定性分析社交网络攻击特征的模型的基础。以VKontakte社交网络机器人的特点为例,提出了以下指标:信任、生存能力、价格、卖家类型、速度和专家质量。为了提取这些指标,提出了一种基于测试购买和图灵测试方法的方法。该方法的主要优点是提出了从实验获得的数据中提取特征,从而获得比专家方法更合理的估计。此外,还描述了使用该方法从VKontakte社交网络的恶意机器人中提取指标的实验,并对指标的依赖性进行了分析。实验证明了度量提取和分析的可能性。一般来说,所提出的指标和提取方法可以成为从社交网络中的二进制攻击检测过渡到攻击者及其能力的定性描述以及机器人进化分析的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信