MexPub: Deep Transfer Learning for Metadata Extraction from German Publications

Zeyd Boukhers, Nada Beili, Timo Hartmann, Prantik Goswami, Muhammad Arslan Zafar
{"title":"MexPub: Deep Transfer Learning for Metadata Extraction from German Publications","authors":"Zeyd Boukhers, Nada Beili, Timo Hartmann, Prantik Goswami, Muhammad Arslan Zafar","doi":"10.1109/JCDL52503.2021.00076","DOIUrl":null,"url":null,"abstract":"In contrast to most of the English scientific publications that follow standard and simple layouts, the order, content, position and size of metadata in German publications vary greatly among publications. This variety makes traditional NLP methods fail to accurately extract metadata from these publications. In this paper, we present a method that extracts metadata from PDF documents with different layouts and styles by viewing the document as an image. We used Mask R-CNN which is trained on COCO dataset and finetuned with PubLayNet dataset that consists of 200K PDF snapshots with five basic classes (e.g, text, figure, etc). We refine-tuned the model on our proposed synthetic dataset consisting of 30K article snapshots to extract nine patterns (i.e. author, title, etc). Our synthetic dataset is generated using contents in both languages German and English and a finite set of challenging templates obtained from German publications. Our method achieved an average accuracy of around 90% which validates its capability to accurately extract metadata from a variety of PDF documents with challenging templates.","PeriodicalId":112400,"journal":{"name":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL52503.2021.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In contrast to most of the English scientific publications that follow standard and simple layouts, the order, content, position and size of metadata in German publications vary greatly among publications. This variety makes traditional NLP methods fail to accurately extract metadata from these publications. In this paper, we present a method that extracts metadata from PDF documents with different layouts and styles by viewing the document as an image. We used Mask R-CNN which is trained on COCO dataset and finetuned with PubLayNet dataset that consists of 200K PDF snapshots with five basic classes (e.g, text, figure, etc). We refine-tuned the model on our proposed synthetic dataset consisting of 30K article snapshots to extract nine patterns (i.e. author, title, etc). Our synthetic dataset is generated using contents in both languages German and English and a finite set of challenging templates obtained from German publications. Our method achieved an average accuracy of around 90% which validates its capability to accurately extract metadata from a variety of PDF documents with challenging templates.
从德国出版物中提取元数据的深度迁移学习
与大多数遵循标准和简单布局的英语科学出版物不同,德语出版物中元数据的顺序、内容、位置和大小在出版物之间差异很大。这种多样性使得传统的NLP方法无法准确地从这些出版物中提取元数据。在本文中,我们提出了一种方法,通过将文档视为图像,从具有不同布局和样式的PDF文档中提取元数据。我们使用了Mask R-CNN,它是在COCO数据集上训练的,并使用PubLayNet数据集进行了微调,该数据集由200K PDF快照组成,具有五个基本类(例如,文本,图形等)。我们在由30K篇文章快照组成的合成数据集上对模型进行了优化,以提取出9种模式(即作者、标题等)。我们的合成数据集是使用德语和英语两种语言的内容以及从德语出版物中获得的有限组具有挑战性的模板生成的。我们的方法达到了90%左右的平均准确率,这证明了它能够准确地从各种具有挑战性模板的PDF文档中提取元数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信