Using Support Vector Regression to Predict the Overall Equipment Effectiveness Indicator*

Mjimer Imane, Es-Saâdia Aoula, E. H. Achouyab
{"title":"Using Support Vector Regression to Predict the Overall Equipment Effectiveness Indicator*","authors":"Mjimer Imane, Es-Saâdia Aoula, E. H. Achouyab","doi":"10.1109/ISCV54655.2022.9806111","DOIUrl":null,"url":null,"abstract":"This study aims to predict the performance of a company measured using the overall equipment effectiveness (OEE), considered one of the key performance indicators used to measure the performance of a manufacturing system. The prediction of the OEE indicator will be done using a supervised learning technique named: support vector regression (SVR), known for its high prediction accuracy and rapid training speed, SVR is an efficient tool in real-value function estimation. A case study is conducted on this work and the model accuracy is 87%.","PeriodicalId":426665,"journal":{"name":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCV54655.2022.9806111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study aims to predict the performance of a company measured using the overall equipment effectiveness (OEE), considered one of the key performance indicators used to measure the performance of a manufacturing system. The prediction of the OEE indicator will be done using a supervised learning technique named: support vector regression (SVR), known for its high prediction accuracy and rapid training speed, SVR is an efficient tool in real-value function estimation. A case study is conducted on this work and the model accuracy is 87%.
使用支持向量回归预测整体设备效能指标*
本研究旨在预测使用整体设备效率(OEE)衡量的公司绩效,OEE被认为是用于衡量制造系统绩效的关键绩效指标之一。OEE指标的预测将使用一种被称为支持向量回归(SVR)的监督学习技术来完成,SVR以其高预测精度和快速训练速度而闻名,是实值函数估计的有效工具。通过实例分析,该模型的准确率达到87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信