A segmentation based global iterative censoring scheme for ship detection in synthetic aperture radar image.doc

S. Tian, Chao Wang, Hong Zhang
{"title":"A segmentation based global iterative censoring scheme for ship detection in synthetic aperture radar image.doc","authors":"S. Tian, Chao Wang, Hong Zhang","doi":"10.1109/IGARSS.2016.7730702","DOIUrl":null,"url":null,"abstract":"This letter depicts a ship detection scheme for synthetic aperture radar images, utilizing a segmentation based global iterative censoring algorithm. In the proposed scheme, the fuzzy local information c-means clustering (RFLICM) algorithm is adopted to partition the inhomogeneous SAR image into numerous homogeneous sub-regions, thereby eliminating the performance degradation caused by SAR image inhomogeneity. Subsequently, successively applying the GIC algorithm base on a parametric clutter model database to the sub-regions, the optimal clutter models and the initial outlier map of the sub-regions are generated. A sliding window CFAR detector based on the selected clutter models and the initial outlier map is utilized to detect ships in the SAR image. In our experiment, we tested the proposed method on spaceborne SAR data, and its effectiveness was successfully demonstrated.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7730702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This letter depicts a ship detection scheme for synthetic aperture radar images, utilizing a segmentation based global iterative censoring algorithm. In the proposed scheme, the fuzzy local information c-means clustering (RFLICM) algorithm is adopted to partition the inhomogeneous SAR image into numerous homogeneous sub-regions, thereby eliminating the performance degradation caused by SAR image inhomogeneity. Subsequently, successively applying the GIC algorithm base on a parametric clutter model database to the sub-regions, the optimal clutter models and the initial outlier map of the sub-regions are generated. A sliding window CFAR detector based on the selected clutter models and the initial outlier map is utilized to detect ships in the SAR image. In our experiment, we tested the proposed method on spaceborne SAR data, and its effectiveness was successfully demonstrated.
基于分割的合成孔径雷达图像船舶检测全局迭代滤波方法[j]
本文描述了一种利用基于分割的全局迭代滤波算法的合成孔径雷达图像的船舶检测方案。该方案采用模糊局部信息c均值聚类(RFLICM)算法,将非均匀SAR图像划分为多个均匀子区域,从而消除了SAR图像非均匀性带来的性能下降。随后,将基于参数化杂波模型数据库的GIC算法依次应用于子区域,生成子区域的最优杂波模型和初始离群图。采用基于所选杂波模型和初始离群图的滑动窗口CFAR检测器对SAR图像中的船舶进行检测。在实验中,我们对星载SAR数据进行了测试,成功验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信