Expert Opinions and Logarithmic Utility Maximization for Multivariate Stock Returns with Gaussian Drift

Jörn Sass, Dorothee Westphal, R. Wunderlich
{"title":"Expert Opinions and Logarithmic Utility Maximization for Multivariate Stock Returns with Gaussian Drift","authors":"Jörn Sass, Dorothee Westphal, R. Wunderlich","doi":"10.1142/S0219024917500224","DOIUrl":null,"url":null,"abstract":"This paper investigates optimal trading strategies in a financial market with multidimensional stock returns where the drift is an unobservable multivariate Ornstein-Uhlenbeck process. Information about the drift is obtained by observing stock returns and expert opinions. The latter provide unbiased estimates on the current state of the drift at discrete points in time. \nThe optimal trading strategy of investors maximizing expected logarithmic utility of terminal wealth depends on the filter which is the conditional expectation of the drift given the available information. We state filtering equations to describe its dynamics for different information settings. Between expert opinions this is the Kalman filter. The conditional covariance matrices of the filter follow ordinary differential equations of Riccati type. We rely on basic theory about matrix Riccati equations to investigate their properties. Firstly, we consider the asymptotic behaviour of the covariance matrices for an increasing number of expert opinions on a finite time horizon. Secondly, we state conditions for the convergence of the covariance matrices on an infinite time horizon with regularly arriving expert opinions. \nFinally, we derive the optimal trading strategy of an investor. The optimal expected logarithmic utility of terminal wealth, the value function, is a functional of the conditional covariance matrices. Hence, our analysis of the covariance matrices allows us to deduce properties of the value function.","PeriodicalId":286833,"journal":{"name":"arXiv: Portfolio Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219024917500224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper investigates optimal trading strategies in a financial market with multidimensional stock returns where the drift is an unobservable multivariate Ornstein-Uhlenbeck process. Information about the drift is obtained by observing stock returns and expert opinions. The latter provide unbiased estimates on the current state of the drift at discrete points in time. The optimal trading strategy of investors maximizing expected logarithmic utility of terminal wealth depends on the filter which is the conditional expectation of the drift given the available information. We state filtering equations to describe its dynamics for different information settings. Between expert opinions this is the Kalman filter. The conditional covariance matrices of the filter follow ordinary differential equations of Riccati type. We rely on basic theory about matrix Riccati equations to investigate their properties. Firstly, we consider the asymptotic behaviour of the covariance matrices for an increasing number of expert opinions on a finite time horizon. Secondly, we state conditions for the convergence of the covariance matrices on an infinite time horizon with regularly arriving expert opinions. Finally, we derive the optimal trading strategy of an investor. The optimal expected logarithmic utility of terminal wealth, the value function, is a functional of the conditional covariance matrices. Hence, our analysis of the covariance matrices allows us to deduce properties of the value function.
高斯漂移下多元股票收益的专家意见与对数效用最大化
本文研究了具有多维股票收益的金融市场的最优交易策略,其中漂移是一个不可观测的多元Ornstein-Uhlenbeck过程。有关漂移的信息是通过观察股票收益和专家意见获得的。后者在离散时间点上对漂移的当前状态提供无偏估计。投资者最终财富的期望对数效用最大化的最优交易策略取决于过滤器,即给定可用信息的漂移的条件期望。我们建立了过滤方程来描述它在不同信息设置下的动态。在专家意见之间,这是卡尔曼滤波器。该滤波器的条件协方差矩阵遵循Riccati型常微分方程。我们依靠矩阵里卡第方程的基本理论来研究它们的性质。首先,我们考虑了有限时间范围内越来越多的专家意见的协方差矩阵的渐近行为。其次,给出了协方差矩阵在有规律到达的专家意见的无限时间范围内收敛的条件。最后,导出了投资者的最优交易策略。终端财富的最优期望对数效用,即价值函数,是条件协方差矩阵的函数。因此,我们对协方差矩阵的分析使我们能够推断出值函数的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信