{"title":"On Körner-Marton's sum modulo two problem","authors":"Milad Sefidgaran, A. Gohari, M. Aref","doi":"10.1109/IWCIT.2015.7140207","DOIUrl":null,"url":null,"abstract":"In this paper we study the sum modulo two problem proposed by Körner and Marton. In this source coding problem, two transmitters who observe binary sources X and Y, send messages of limited rate to a receiver whose goal is to compute the sum modulo of X and Y. This problem has been solved for the two special cases of independent and symmetric sources. In both of these cases, the rate pair (H(X|Y), H(Y|X)) is achievable. The best known outer bound for this problem is a conventional cut-set bound, and the best known inner bound is derived by Ahlswede and Han using a combination of Slepian-Wolf and Körner-Marton's coding schemes. In this paper, we propose a new outer bound which is strictly better than the cut-set bound. In particular, we show that the rate pair (H(X|Y), H(Y|X)) is not achievable for any binary sources other than independent and symmetric sources. Then, we study the minimum achievable sum-rate using Ahlswede-Han's region and propose a conjecture that this amount is not less than minimum of Slepian-Wolf and Körner-Marton's achievable sum-rates. We provide some evidences for this conjecture.","PeriodicalId":166939,"journal":{"name":"2015 Iran Workshop on Communication and Information Theory (IWCIT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Iran Workshop on Communication and Information Theory (IWCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIT.2015.7140207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper we study the sum modulo two problem proposed by Körner and Marton. In this source coding problem, two transmitters who observe binary sources X and Y, send messages of limited rate to a receiver whose goal is to compute the sum modulo of X and Y. This problem has been solved for the two special cases of independent and symmetric sources. In both of these cases, the rate pair (H(X|Y), H(Y|X)) is achievable. The best known outer bound for this problem is a conventional cut-set bound, and the best known inner bound is derived by Ahlswede and Han using a combination of Slepian-Wolf and Körner-Marton's coding schemes. In this paper, we propose a new outer bound which is strictly better than the cut-set bound. In particular, we show that the rate pair (H(X|Y), H(Y|X)) is not achievable for any binary sources other than independent and symmetric sources. Then, we study the minimum achievable sum-rate using Ahlswede-Han's region and propose a conjecture that this amount is not less than minimum of Slepian-Wolf and Körner-Marton's achievable sum-rates. We provide some evidences for this conjecture.