Predicting the Users’ Next Location From WLAN Mobility Data

Ljubica Pajevic, V. Fodor, G. Karlsson
{"title":"Predicting the Users’ Next Location From WLAN Mobility Data","authors":"Ljubica Pajevic, V. Fodor, G. Karlsson","doi":"10.1109/LANMAN.2018.8475117","DOIUrl":null,"url":null,"abstract":"Accurate prediction of user mobility allows the efficient use of resources in our ubiquitously connected environment. In this work we study the predictability of the users’ next location, considering a campus scenario with highly mobile users. We utilize Markov predictors, and estimate the theoretical predictability limits. Based on the mobility traces of nearly 7400 wireless network users, we estimate that the maximum predictability of the users is on average 82%, and we find that the best Markov predictor is accurate 67% of the time. In addition, we show that moderate performance gains can be achieved by leveraging multi-location prediction.","PeriodicalId":103856,"journal":{"name":"2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LANMAN.2018.8475117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of user mobility allows the efficient use of resources in our ubiquitously connected environment. In this work we study the predictability of the users’ next location, considering a campus scenario with highly mobile users. We utilize Markov predictors, and estimate the theoretical predictability limits. Based on the mobility traces of nearly 7400 wireless network users, we estimate that the maximum predictability of the users is on average 82%, and we find that the best Markov predictor is accurate 67% of the time. In addition, we show that moderate performance gains can be achieved by leveraging multi-location prediction.
利用无线局域网移动数据预测用户的下一个位置
对用户移动性的准确预测可以在我们无处不在的连接环境中有效利用资源。在这项工作中,我们研究了用户下一个位置的可预测性,考虑了一个具有高度移动用户的校园场景。我们利用马尔可夫预测器,并估计理论可预测性极限。基于近7400个无线网络用户的移动轨迹,我们估计用户的最大可预测性平均为82%,我们发现最好的马尔可夫预测器在67%的时间内是准确的。此外,我们还表明,通过利用多位置预测可以实现适度的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信