Agent-Based Meta-Heuristic Approach to Discrete Optimization

A. Byrski, Marek Kisiel-Dorohinicki
{"title":"Agent-Based Meta-Heuristic Approach to Discrete Optimization","authors":"A. Byrski, Marek Kisiel-Dorohinicki","doi":"10.1109/CISIS.2011.83","DOIUrl":null,"url":null,"abstract":"The paper presents an idea of agent-based meta-heuristic integrating a computational optimization system (evolutionary multi-agent system) with ant colony optimization technique. In the proposed model, chosen parameters of ant colonies may be encoded as genotypes and subjected to evolution process carried out by agents. The goal of the whole system is to search for the best solution of the discrete optimization problem based on the results of the ant colonies run using different parameters. The proposed concept forms a base for further research on bringing different interactions known in ant-colony optimization to the inter-agent level. The considerations are illustrated with preliminary experimental results obtained for parallel ant system solving quadratic assignment problem.","PeriodicalId":203206,"journal":{"name":"2011 International Conference on Complex, Intelligent, and Software Intensive Systems","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Complex, Intelligent, and Software Intensive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISIS.2011.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper presents an idea of agent-based meta-heuristic integrating a computational optimization system (evolutionary multi-agent system) with ant colony optimization technique. In the proposed model, chosen parameters of ant colonies may be encoded as genotypes and subjected to evolution process carried out by agents. The goal of the whole system is to search for the best solution of the discrete optimization problem based on the results of the ant colonies run using different parameters. The proposed concept forms a base for further research on bringing different interactions known in ant-colony optimization to the inter-agent level. The considerations are illustrated with preliminary experimental results obtained for parallel ant system solving quadratic assignment problem.
基于agent的离散优化元启发式方法
本文提出了一种将计算优化系统(进化多智能体系统)与蚁群优化技术相结合的基于智能体的元启发式思想。在该模型中,蚁群的选择参数可以被编码为基因型,并受到代理人进行的进化过程。整个系统的目标是根据不同参数下蚁群的运行结果,寻找离散优化问题的最优解。提出的概念为进一步研究将蚁群优化中的不同交互作用引入智能体间水平奠定了基础。用并行蚁群系统求解二次分配问题的初步实验结果说明了上述考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信