Determination of the essential matrix using discrete and differential matching constraints

Adel H. Fakih, J. Zelek
{"title":"Determination of the essential matrix using discrete and differential matching constraints","authors":"Adel H. Fakih, J. Zelek","doi":"10.1109/CIIP.2009.4937889","DOIUrl":null,"url":null,"abstract":"We present a method to determine the essential matrix using both discrete and differential matching constraints. Differential constraints, derived from optical flow, are abundant in contrast to the discrete constraints, derived from feature correspondences, which are scarce when just a limited number of salient features are available. We formulate a likelihood of the camera motion given the correspondences of a set of features and the image velocities of these features. We show how this likelihood can be used to determine the essential matrix both in a robust hypothesize-and-test framework, and then in non-linear iterative refinement. Our results show that the use of the extra optical flow constraints gives better estimates of the essential matrix, when compared to using the discrete data alone.","PeriodicalId":349149,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Image Processing","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIIP.2009.4937889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a method to determine the essential matrix using both discrete and differential matching constraints. Differential constraints, derived from optical flow, are abundant in contrast to the discrete constraints, derived from feature correspondences, which are scarce when just a limited number of salient features are available. We formulate a likelihood of the camera motion given the correspondences of a set of features and the image velocities of these features. We show how this likelihood can be used to determine the essential matrix both in a robust hypothesize-and-test framework, and then in non-linear iterative refinement. Our results show that the use of the extra optical flow constraints gives better estimates of the essential matrix, when compared to using the discrete data alone.
用离散和微分匹配约束确定基本矩阵
提出了一种利用离散匹配约束和微分匹配约束确定本质矩阵的方法。来自于光流的微分约束与来自于特征对应的离散约束相比是丰富的,当只有有限数量的显著特征可用时,离散约束是稀缺的。我们在给定一组特征和这些特征的图像速度的对应关系的情况下,制定了相机运动的可能性。我们展示了这种可能性如何在稳健的假设和测试框架中用于确定基本矩阵,然后在非线性迭代细化中。我们的结果表明,与单独使用离散数据相比,使用额外的光流约束可以更好地估计基本矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信