Efficient Task Allocation to FPGAs in the Safety Critical Domain

P. Conmy, I. Bate
{"title":"Efficient Task Allocation to FPGAs in the Safety Critical Domain","authors":"P. Conmy, I. Bate","doi":"10.1109/PRDC.2011.23","DOIUrl":null,"url":null,"abstract":"Field Programmable Gate Arrays (FPGAs) are highly configurable programmable logic devices. They offer many benefits over traditional micro-processors such as the ability to efficiently run tasks in parallel and also highly predictable timing performance. They are becoming increasingly popular for use in the safety critical domain where predictability is essential. However, concerns about their dependability, principally their reliability and difficulties in assessing the impact of an internal failure means that current designs are inefficient and conservative. This paper discusses these issues in depth. It also presents an FPGA task allocation method using simulated annealing to balance efficiency and reliability requirements. This can be used to improve designs of safety critical FPGA based systems.","PeriodicalId":254760,"journal":{"name":"2011 IEEE 17th Pacific Rim International Symposium on Dependable Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 17th Pacific Rim International Symposium on Dependable Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2011.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Field Programmable Gate Arrays (FPGAs) are highly configurable programmable logic devices. They offer many benefits over traditional micro-processors such as the ability to efficiently run tasks in parallel and also highly predictable timing performance. They are becoming increasingly popular for use in the safety critical domain where predictability is essential. However, concerns about their dependability, principally their reliability and difficulties in assessing the impact of an internal failure means that current designs are inefficient and conservative. This paper discusses these issues in depth. It also presents an FPGA task allocation method using simulated annealing to balance efficiency and reliability requirements. This can be used to improve designs of safety critical FPGA based systems.
安全临界域fpga的高效任务分配
现场可编程门阵列(fpga)是高度可配置的可编程逻辑器件。与传统的微处理器相比,它们提供了许多好处,例如能够有效地并行运行任务,并且具有高度可预测的时序性能。在可预测性至关重要的安全关键领域,它们正变得越来越受欢迎。然而,考虑到它们的可靠性,主要是它们的可靠性和评估内部故障影响的困难意味着当前的设计是低效和保守的。本文对这些问题进行了深入的探讨。提出了一种利用模拟退火来平衡效率和可靠性要求的FPGA任务分配方法。这可以用于改进基于FPGA的安全关键系统的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信