Visualization of hyperplanes for SVM classification

A. Lucieer
{"title":"Visualization of hyperplanes for SVM classification","authors":"A. Lucieer","doi":"10.1109/IGARSS.2007.4423230","DOIUrl":null,"url":null,"abstract":"The 'Hyperplane' is the decision boundary in feature space that separates two classes with the greatest margin. This study aims to visualize SVM hyperplanes between multiple classes in a 3D feature space. This Visual Data Mining (VDM) tool is developed for four reasons: 1) to improve a user's understanding of the SVM classifier; 2) to visually assess the potential overlap of training pixels in feature space; 3) to assess the accuracy with which hyperplanes based on an SVM classifier can separate classes; 4) to explore uncertainty related to pixels that cross the hyperplane. This paper argues that VDM is an important tool for visual exploration of the data to improve insight into the classification algorithm and identify sources uncertainty.","PeriodicalId":284711,"journal":{"name":"2007 IEEE International Geoscience and Remote Sensing Symposium","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2007.4423230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The 'Hyperplane' is the decision boundary in feature space that separates two classes with the greatest margin. This study aims to visualize SVM hyperplanes between multiple classes in a 3D feature space. This Visual Data Mining (VDM) tool is developed for four reasons: 1) to improve a user's understanding of the SVM classifier; 2) to visually assess the potential overlap of training pixels in feature space; 3) to assess the accuracy with which hyperplanes based on an SVM classifier can separate classes; 4) to explore uncertainty related to pixels that cross the hyperplane. This paper argues that VDM is an important tool for visual exploration of the data to improve insight into the classification algorithm and identify sources uncertainty.
SVM分类的超平面可视化
“超平面”是特征空间中的决策边界,它以最大的边界分隔两个类。本研究的目的是在三维特征空间中可视化多类之间的SVM超平面。这个可视化数据挖掘(VDM)工具的开发有四个原因:1)提高用户对SVM分类器的理解;2)视觉评估特征空间中训练像素的潜在重叠;3)评估基于SVM分类器的超平面分类准确率;4)探索与穿过超平面的像素相关的不确定性。本文认为,VDM是数据可视化探索的重要工具,可以提高对分类算法的洞察力和识别来源的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信