Theoretically Motivated Data Augmentation and Regularization for Portfolio Construction

Liu Ziyin, Kentaro Minami, Kentaro Imajo
{"title":"Theoretically Motivated Data Augmentation and Regularization for Portfolio Construction","authors":"Liu Ziyin, Kentaro Minami, Kentaro Imajo","doi":"10.1145/3533271.3561720","DOIUrl":null,"url":null,"abstract":"The task we consider is portfolio construction in a speculative market, a fundamental problem in modern finance. While various empirical works now exist to explore deep learning in finance, the theory side is almost non-existent. In this work, we focus on developing a theoretical framework for understanding the use of data augmentation for deep-learning-based approaches to quantitative finance. The proposed theory clarifies the role and necessity of data augmentation for finance; moreover, our theory implies that a simple algorithm of injecting a random noise of strength to the observed return rt is better than not injecting any noise and a few other financially irrelevant data augmentation techniques.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"13 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The task we consider is portfolio construction in a speculative market, a fundamental problem in modern finance. While various empirical works now exist to explore deep learning in finance, the theory side is almost non-existent. In this work, we focus on developing a theoretical framework for understanding the use of data augmentation for deep-learning-based approaches to quantitative finance. The proposed theory clarifies the role and necessity of data augmentation for finance; moreover, our theory implies that a simple algorithm of injecting a random noise of strength to the observed return rt is better than not injecting any noise and a few other financially irrelevant data augmentation techniques.
投资组合构建的理论激励数据增强与正则化
我们考虑的任务是在投机市场中的投资组合构建,这是现代金融的一个基本问题。虽然现在有各种实证工作来探索金融中的深度学习,但理论方面几乎不存在。在这项工作中,我们专注于开发一个理论框架,以理解基于深度学习的定量金融方法中数据增强的使用。提出的理论阐明了金融数据扩充的作用和必要性;此外,我们的理论表明,向观察到的返回rt注入强度随机噪声的简单算法优于不注入任何噪声和其他一些财务上无关的数据增强技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信