Analysis of BEECLUST swarm algorithm

J. Hereford
{"title":"Analysis of BEECLUST swarm algorithm","authors":"J. Hereford","doi":"10.1109/SIS.2011.5952587","DOIUrl":null,"url":null,"abstract":"We analyze a new swarm search algorithm based on the behavior of social insects, specifically honey bees. The new algorithm does not require any agent-agent communication and does not require the agents to know position information. The agents, or bots, cluster together near peaks in the search space based on the fitness value at the locations where the agents collide. In this paper we describe the algorithm, model the algorithm using a birth and death Markov chain, and determine the expected time for the agents/bots to cluster. We also determine the swarm size needed to complete a search in a reasonable time frame.","PeriodicalId":175889,"journal":{"name":"2011 IEEE Symposium on Swarm Intelligence","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2011.5952587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We analyze a new swarm search algorithm based on the behavior of social insects, specifically honey bees. The new algorithm does not require any agent-agent communication and does not require the agents to know position information. The agents, or bots, cluster together near peaks in the search space based on the fitness value at the locations where the agents collide. In this paper we describe the algorithm, model the algorithm using a birth and death Markov chain, and determine the expected time for the agents/bots to cluster. We also determine the swarm size needed to complete a search in a reasonable time frame.
BEECLUST群算法分析
我们分析了一种新的基于群居昆虫,特别是蜜蜂行为的群体搜索算法。新算法不需要任何智能体之间的通信,也不需要智能体知道位置信息。基于代理碰撞位置的适应度值,代理或机器人在搜索空间的峰值附近聚集在一起。在本文中,我们描述了该算法,使用出生和死亡马尔可夫链对算法进行建模,并确定了代理/机器人聚类的预期时间。我们还确定在合理的时间框架内完成搜索所需的蜂群大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信