Spin versions of the complex trigonometric Ruijsenaars–Schneider model from cyclic quivers

M. Fairon
{"title":"Spin versions of the complex trigonometric Ruijsenaars–Schneider model from cyclic quivers","authors":"M. Fairon","doi":"10.1093/integr/xyz008","DOIUrl":null,"url":null,"abstract":"We study multiplicative quiver varieties associated to specific extensions of cyclic quivers with $m\\geq 2$ vertices. Their global Poisson structure is characterized by quasi-Hamiltonian algebras related to these quivers, which were studied by Van den Bergh for an arbitrary quiver. We show that the spaces are generically isomorphic to the case $m=1$ corresponding to an extended Jordan quiver. This provides a set of local coordinates, which we use to interpret integrable systems as spin variants of the trigonometric Ruijsenaars–Schneider (RS) system. This generalizes to new spin cases recent works on classical integrable systems in the RS family.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/integr/xyz008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We study multiplicative quiver varieties associated to specific extensions of cyclic quivers with $m\geq 2$ vertices. Their global Poisson structure is characterized by quasi-Hamiltonian algebras related to these quivers, which were studied by Van den Bergh for an arbitrary quiver. We show that the spaces are generically isomorphic to the case $m=1$ corresponding to an extended Jordan quiver. This provides a set of local coordinates, which we use to interpret integrable systems as spin variants of the trigonometric Ruijsenaars–Schneider (RS) system. This generalizes to new spin cases recent works on classical integrable systems in the RS family.
循环颤振的复三角rujsenaars - schneider模型的自旋版本
我们研究了与具有$m\geq 2$顶点的循环颤振的特定扩展相关的乘法颤振变体。它们的整体泊松结构用与这些颤振相关的准哈密顿代数来表征,Van den Bergh研究了任意颤振的准哈密顿代数。我们证明了这些空间是广义同构于$m=1$对应于一个扩展约当囊的情形。这提供了一组局部坐标,我们用它来解释可积系统作为三角rujsenaars - schneider (RS)系统的自旋变体。这推广到最近关于RS族经典可积系统的新自旋情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信