Reactive power minimization of dual active bridge DC/DC converter with triple phase shift control using neural network

Yasen A. Harrye, K. Ahmed, A. Aboushady
{"title":"Reactive power minimization of dual active bridge DC/DC converter with triple phase shift control using neural network","authors":"Yasen A. Harrye, K. Ahmed, A. Aboushady","doi":"10.1109/ICRERA.2014.7016448","DOIUrl":null,"url":null,"abstract":"Reactive power flow increases dual active bridge (DAB) converter RMS current leading to an increase in conduction losses especially in high power applications. This paper proposes a new optimized triple phase shift (TPS) switching algorithm that minimizes the total reactive power of the converter. The algorithm iteratively searches for TPS control variables that satisfy the desired active power flow while selecting the operating mode with minimum reactive power consumption. This is valid for the whole range of converter operation. The iterative algorithm is run offline for the entire active power range (-1pu to 1pu) and the resulting data is used to train an open loop artificial neural network controller to reduce computational time and memory allocation necessary to store the data generated. To validate the accuracy of the proposed controller, a 500-MW 300kV/100kV DAB model is simulated in Matlab/Simulink, as a potential application for DAB in DC grids.","PeriodicalId":243870,"journal":{"name":"2014 International Conference on Renewable Energy Research and Application (ICRERA)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Renewable Energy Research and Application (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2014.7016448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Reactive power flow increases dual active bridge (DAB) converter RMS current leading to an increase in conduction losses especially in high power applications. This paper proposes a new optimized triple phase shift (TPS) switching algorithm that minimizes the total reactive power of the converter. The algorithm iteratively searches for TPS control variables that satisfy the desired active power flow while selecting the operating mode with minimum reactive power consumption. This is valid for the whole range of converter operation. The iterative algorithm is run offline for the entire active power range (-1pu to 1pu) and the resulting data is used to train an open loop artificial neural network controller to reduce computational time and memory allocation necessary to store the data generated. To validate the accuracy of the proposed controller, a 500-MW 300kV/100kV DAB model is simulated in Matlab/Simulink, as a potential application for DAB in DC grids.
基于神经网络的双有源桥式三相移控制DC/DC变换器无功功率最小化
无功功率流增加了双有源桥(DAB)变换器的有效值电流,导致导通损耗增加,特别是在高功率应用中。本文提出了一种新的优化三相移(TPS)开关算法,使变换器的总无功功率最小。该算法迭代搜索满足期望有功潮流的TPS控制变量,同时选择无功功耗最小的运行模式。这对整个转炉操作范围都是有效的。迭代算法在整个有功功率范围(-1pu至1pu)离线运行,所得数据用于训练开环人工神经网络控制器,以减少计算时间和存储生成数据所需的内存分配。为了验证所提出控制器的准确性,在Matlab/Simulink中对500-MW 300kV/100kV DAB模型进行了仿真,作为DAB在直流电网中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信