{"title":"Slowing down Internet worms","authors":"Shigang Chen, Yong Tang","doi":"10.1109/ICDCS.2004.1281596","DOIUrl":null,"url":null,"abstract":"An Internet worm automatically replicates itself to vulnerable systems and may infect hundreds of thousands of servers across the Internet. It is conceivable that the cyber-terrorists may use a wide-spread worm to cause major disruption to our Internet economy. While much recent research concentrates on propagation models, the defense against worms is largely an open problem. We propose a distributed antiworm architecture (DAW) that automatically slows down or even halts the worm propagation. New defense techniques are developed based on behavioral difference between normal hosts and worm-infected hosts. Particularly, a worm-infected host has a much higher connection-failure rate when it scans the Internet with randomly selected addresses. This property allows DAW to set the worms apart from the normal hosts. We propose a temporal rate-limit algorithm and a spatial rate-limit algorithm, which makes the speed of worm propagation configurable by the parameters of the defense system. DAW is designed for an Internet service provider to provide the anti-worm service to its customers. The effectiveness of the new techniques is evaluated analytically and by simulations.","PeriodicalId":348300,"journal":{"name":"24th International Conference on Distributed Computing Systems, 2004. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"122","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"24th International Conference on Distributed Computing Systems, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2004.1281596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 122
Abstract
An Internet worm automatically replicates itself to vulnerable systems and may infect hundreds of thousands of servers across the Internet. It is conceivable that the cyber-terrorists may use a wide-spread worm to cause major disruption to our Internet economy. While much recent research concentrates on propagation models, the defense against worms is largely an open problem. We propose a distributed antiworm architecture (DAW) that automatically slows down or even halts the worm propagation. New defense techniques are developed based on behavioral difference between normal hosts and worm-infected hosts. Particularly, a worm-infected host has a much higher connection-failure rate when it scans the Internet with randomly selected addresses. This property allows DAW to set the worms apart from the normal hosts. We propose a temporal rate-limit algorithm and a spatial rate-limit algorithm, which makes the speed of worm propagation configurable by the parameters of the defense system. DAW is designed for an Internet service provider to provide the anti-worm service to its customers. The effectiveness of the new techniques is evaluated analytically and by simulations.