Game Engine Based 2D Emotion Segmentation Generation Method

Shinjin Kang, Jong-In Choi, Hyunjeong Tae, Sookyun Kim
{"title":"Game Engine Based 2D Emotion Segmentation Generation Method","authors":"Shinjin Kang, Jong-In Choi, Hyunjeong Tae, Sookyun Kim","doi":"10.1109/CSCI54926.2021.00173","DOIUrl":null,"url":null,"abstract":"This paper proposes a low-cost production and utilization technique for labeling emotion data in game engines, which can be used to support rapidly developing deep learning technologies. The proposed system extracts realistic images from game environments and automatically creates quantified two-dimensional (2D) emotion segmentation images linked to the extracted images. The segmentation data are learned through an image-to-image translation network. This 2D emotion segmentation mapping technique is trained using many training data, which allows stable learning. Industries that require spatial emotion interpretation can utilize the results of this study.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"9 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a low-cost production and utilization technique for labeling emotion data in game engines, which can be used to support rapidly developing deep learning technologies. The proposed system extracts realistic images from game environments and automatically creates quantified two-dimensional (2D) emotion segmentation images linked to the extracted images. The segmentation data are learned through an image-to-image translation network. This 2D emotion segmentation mapping technique is trained using many training data, which allows stable learning. Industries that require spatial emotion interpretation can utilize the results of this study.
基于游戏引擎的2D情感分割生成方法
本文提出了一种低成本的游戏引擎情感数据标注和利用技术,可用于支持快速发展的深度学习技术。该系统从游戏环境中提取真实图像,并自动创建与提取图像相关联的量化二维(2D)情感分割图像。通过图像到图像的翻译网络学习分割数据。这种二维情感分割映射技术使用了大量的训练数据进行训练,学习稳定。需要空间情感解读的行业可以利用本研究的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信