SIFAT-SIFAT RING FAKTOR YANG DILENGKAPI DERIVASI

Iwan Ernanto
{"title":"SIFAT-SIFAT RING FAKTOR YANG DILENGKAPI DERIVASI","authors":"Iwan Ernanto","doi":"10.14710/JFMA.V1I1.3","DOIUrl":null,"url":null,"abstract":"Let $R$ is a ring with unit element and $\\delta$ is a derivation on $R$. An ideal $I$ of $R$ is called $\\delta$-ideal if it satisfies $\\delta (I)\\subseteq I$. Related to the theory of ideal, we can define prime $\\delta$-ideal and maximal $\\delta$-ideal. The ring $R$ is called $\\delta$-simple if $R$ is non-zero and the only $\\delta$-ideal of $R$ are ${0}$ and $R$. In this paper, given the necessary and sufficient conditions for quotient ring $R/I$ is a $\\delta$-simple where $\\delta_*$ is a derivation on $R/I$ such that $\\delta_* \\circ \\pi =\\pi \\circ \\delta$.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JFMA.V1I1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ is a ring with unit element and $\delta$ is a derivation on $R$. An ideal $I$ of $R$ is called $\delta$-ideal if it satisfies $\delta (I)\subseteq I$. Related to the theory of ideal, we can define prime $\delta$-ideal and maximal $\delta$-ideal. The ring $R$ is called $\delta$-simple if $R$ is non-zero and the only $\delta$-ideal of $R$ are ${0}$ and $R$. In this paper, given the necessary and sufficient conditions for quotient ring $R/I$ is a $\delta$-simple where $\delta_*$ is a derivation on $R/I$ such that $\delta_* \circ \pi =\pi \circ \delta$.
拳击具有推动力的特性
设$R$是一个具有单位元素的环,$\delta$是$R$的派生。一个$R$的理想$I$如果满足$\delta (I)\subseteq I$,就称为$\delta$ -理想。结合理想理论,我们可以定义质数$\delta$ -理想和极大$\delta$ -理想。如果$R$不为零,则环$R$称为$\delta$ -简单,而$R$的唯一$\delta$ -理想是${0}$和$R$。本文给出了商环的充要条件$R/I$是一个$\delta$ -简单,其中$\delta_*$是$R/I$上的一个导数,使得$\delta_* \circ \pi =\pi \circ \delta$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信