Global existence and stability of temporal periodic solution to non-isentropic compressible Euler equations with a source term

Shuyue Ma, Jiawei Sun, Huimin Yu
{"title":"Global existence and stability of temporal periodic solution to non-isentropic compressible Euler equations with a source term","authors":"Shuyue Ma, Jiawei Sun, Huimin Yu","doi":"10.3934/cam.2023013","DOIUrl":null,"url":null,"abstract":"In this paper, the 1-D compressible non-isentropic Euler equations with the source term $ \\beta\\rho|u|^ \\alpha u $ in a bounded domain are considered. First, we study the existence of steady flows which can keep the upstream supersonic or subsonic state. Then, by wave decomposition and uniform prior estimations, we prove the global existence and stability of smooth solutions under small perturbations around the steady supersonic flow. Moreover, we get that the smooth supersonic solution is a temporal periodic solution with the same period as the boundary, after a certain start-up time, once the boundary conditions are temporal periodic.","PeriodicalId":233941,"journal":{"name":"Communications in Analysis and Mechanics","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cam.2023013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the 1-D compressible non-isentropic Euler equations with the source term $ \beta\rho|u|^ \alpha u $ in a bounded domain are considered. First, we study the existence of steady flows which can keep the upstream supersonic or subsonic state. Then, by wave decomposition and uniform prior estimations, we prove the global existence and stability of smooth solutions under small perturbations around the steady supersonic flow. Moreover, we get that the smooth supersonic solution is a temporal periodic solution with the same period as the boundary, after a certain start-up time, once the boundary conditions are temporal periodic.
带源项的非等熵可压缩欧拉方程时间周期解的全局存在性和稳定性
研究了源项为$ \beta\rho|u|^ \alpha u $的有界域上的一维可压缩非等熵欧拉方程。首先,研究了能保持上游超声速或亚音速状态的定常流的存在性。然后,通过波分解和均匀先验估计,证明了稳定超声速流动周围小扰动下光滑解的全局存在性和稳定性。在一定的启动时间后,一旦边界条件为时间周期,则光滑超声速解是与边界周期相同的时间周期解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信