Bayesian Parameter Inference of Explosive Yields Using Markov Chain Monte Carlo Techniques

J. Burkhardt
{"title":"Bayesian Parameter Inference of Explosive Yields Using Markov Chain Monte Carlo Techniques","authors":"J. Burkhardt","doi":"10.36478/jeasci.2020.1115.1126","DOIUrl":null,"url":null,"abstract":"A Bayesian parameter inference problem is conducted to estimate the explosive yield of the first atomic explosion at Trinity in New Mexico. The first of its kind, the study advances understanding of fireball dynamics and provides an improved method for the determination of explosive yield. Using fireball radius-time data taken from archival film footage of the explosion and a physical model for the expansion characteristics of the resulting fireball, a yield estimate is made. Bayesian results from the Markov chain indicate that the estimated parameters are consistent with previous calculation except for the critical parameter that modifies the independent time variable. This unique result finds that this parameter deviates in a statistically significant way from previous predictions. Use of the Bayesian parameter estimates computed is found to greatly improve the ability of the fireball model to predict the observed data. In addition, parameter correlations are computed from the Markov chain and discussed. As a result, the method used increases basic understanding of fireball dynamics and provides an improved method for the determination of explosive yields.","PeriodicalId":312036,"journal":{"name":"International Journal of Mathematical Sciences and Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Sciences and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36478/jeasci.2020.1115.1126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A Bayesian parameter inference problem is conducted to estimate the explosive yield of the first atomic explosion at Trinity in New Mexico. The first of its kind, the study advances understanding of fireball dynamics and provides an improved method for the determination of explosive yield. Using fireball radius-time data taken from archival film footage of the explosion and a physical model for the expansion characteristics of the resulting fireball, a yield estimate is made. Bayesian results from the Markov chain indicate that the estimated parameters are consistent with previous calculation except for the critical parameter that modifies the independent time variable. This unique result finds that this parameter deviates in a statistically significant way from previous predictions. Use of the Bayesian parameter estimates computed is found to greatly improve the ability of the fireball model to predict the observed data. In addition, parameter correlations are computed from the Markov chain and discussed. As a result, the method used increases basic understanding of fireball dynamics and provides an improved method for the determination of explosive yields.
基于马尔可夫链蒙特卡罗技术的爆炸当量贝叶斯参数推断
利用贝叶斯参数推理问题对新墨西哥州三位一体核爆的爆炸当量进行了估计。这一研究首次促进了对火球动力学的认识,并为确定爆炸当量提供了一种改进的方法。利用从爆炸档案胶片中获得的火球半径-时间数据和由此产生的火球膨胀特性的物理模型,进行了当量估计。由马尔可夫链得到的贝叶斯结果表明,除了修改自变量的关键参数外,估计的参数与先前的计算一致。这个独特的结果发现,该参数以统计上显著的方式偏离了以前的预测。利用计算得到的贝叶斯参数估计大大提高了火球模型对观测数据的预测能力。此外,从马尔可夫链计算了参数的相关性,并进行了讨论。结果,所使用的方法增加了对火球动力学的基本理解,并为确定爆炸当量提供了一种改进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信