The Effect of Serial Correlation in Estimating Dynamic Panel Data Models

O. Olubusoye, J. T. Olajide
{"title":"The Effect of Serial Correlation in Estimating Dynamic Panel Data Models","authors":"O. Olubusoye, J. T. Olajide","doi":"10.54908/iljs.2015.02.02.010","DOIUrl":null,"url":null,"abstract":"There are several methods of estimating dynamic panel data models in the context of both micro-economic and macro-economic data.  This paper investigates the performance of five different estimators of dynamic panel data models (the random effect model).  A  Monte Carlo experiment was conducted when individual, N is large and time dimension, T is finite and the error component model is assumed to be serially correlated. The bias and Root Mean Square Error criterion were used to access the performance of different estimators under consideration. We find that the Anderson-Hsiao using lagged differences as instrument (AH(d)) performs better when the time dimension is small (T=5), Anderson-Hsiao using lagged levels as instrument (AH(l)) performs better when T is moderate(T=10) and the first step Arellano-Bond estimator (ABGMM1) outperforms all other estimators when T increases to 20, this confirms the work of Kiviet (1995)  and Judson-Owen(1996) that no estimator has been found to be appropriate choice in all circumstances. For a dynamic panel data with large time dimension we suggest that the first step Arellano-Bond Estimator (ABGMM1) Estimator is appropriate.  The result shows that the bias of the first step Arellano-Bond estimator (ABGMM1) estimate is severe with small time dimension and the ordinary Least Square (OLS) and Least Square Dummy Variable (LSDV) are also bias when T is small.  It was discovered that the effect of serial correlation is negligible irrespective of the order. Keywords: Autocorrelation, Dynamic Panel data, Econometric models, Generalized Method of Moment (GMM), Moving Average.","PeriodicalId":197712,"journal":{"name":"Ilorin Journal of Science","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilorin Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54908/iljs.2015.02.02.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There are several methods of estimating dynamic panel data models in the context of both micro-economic and macro-economic data.  This paper investigates the performance of five different estimators of dynamic panel data models (the random effect model).  A  Monte Carlo experiment was conducted when individual, N is large and time dimension, T is finite and the error component model is assumed to be serially correlated. The bias and Root Mean Square Error criterion were used to access the performance of different estimators under consideration. We find that the Anderson-Hsiao using lagged differences as instrument (AH(d)) performs better when the time dimension is small (T=5), Anderson-Hsiao using lagged levels as instrument (AH(l)) performs better when T is moderate(T=10) and the first step Arellano-Bond estimator (ABGMM1) outperforms all other estimators when T increases to 20, this confirms the work of Kiviet (1995)  and Judson-Owen(1996) that no estimator has been found to be appropriate choice in all circumstances. For a dynamic panel data with large time dimension we suggest that the first step Arellano-Bond Estimator (ABGMM1) Estimator is appropriate.  The result shows that the bias of the first step Arellano-Bond estimator (ABGMM1) estimate is severe with small time dimension and the ordinary Least Square (OLS) and Least Square Dummy Variable (LSDV) are also bias when T is small.  It was discovered that the effect of serial correlation is negligible irrespective of the order. Keywords: Autocorrelation, Dynamic Panel data, Econometric models, Generalized Method of Moment (GMM), Moving Average.
序列相关在动态面板数据模型估计中的作用
在微观经济和宏观经济数据的背景下,有几种估计动态面板数据模型的方法。本文研究了动态面板数据模型(随机效应模型)的五种不同估计器的性能。在个体、N大、时间维、T有限、误差分量模型序列相关的条件下,进行蒙特卡罗实验。使用偏差和均方根误差准则来评估不同估计器的性能。我们发现,当时间维度较小(T=5)时,使用滞后差异作为工具的Anderson-Hsiao (AH(d))表现更好,当T为中等(T=10)时,使用滞后水平作为工具的Anderson-Hsiao (AH(l))表现更好,当T增加到20时,第一步Arellano-Bond估计器(ABGMM1)优于所有其他估计器,这证实了Kiviet(1995)和Judson-Owen(1996)的工作,即没有发现任何估计器在所有情况下都是合适的选择。对于具有大时间维的动态面板数据,我们建议采用第一步Arellano-Bond估计器(ABGMM1)估计器。结果表明,第一步Arellano-Bond估计(ABGMM1)估计在时间维较小的情况下偏差严重,普通最小二乘(OLS)和最小二乘虚拟变量(LSDV)在T较小时也存在偏差。结果发现,序列相关的影响与序列无关,可以忽略不计。关键词:自相关,动态面板数据,计量经济模型,广义矩量法,移动平均
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信