Optimal Control

D. Limebeer, M. Massaro
{"title":"Optimal Control","authors":"D. Limebeer, M. Massaro","doi":"10.1093/oso/9780198825715.003.0008","DOIUrl":null,"url":null,"abstract":"Chapter 8 focuses on nonlinear optimal control and its applications. The chapter begins by introducing the fundamentals of optimal control and prototypical problem formulations. This is followed by the treatment of first-order necessary conditions including the Pontryagin minimum principle, dynamic programming, and the Hamilton–Jacobi–Bellman equation. Singular arcs and bang–bang controls are relevant in the solution of many minimum-time and minimum-fuel problems and so these issues are discussed with the help of examples that have been worked out in detail.This chapter then turns towards direct and indirect numericalmethods suitable for solving large-scale optimal control problems numerically.The chapter concludes with an example relating to the calculation of an optimal track curvature estimate from global positioning system (GPS) data.","PeriodicalId":347965,"journal":{"name":"Dynamics and Optimal Control of Road Vehicles","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics and Optimal Control of Road Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198825715.003.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chapter 8 focuses on nonlinear optimal control and its applications. The chapter begins by introducing the fundamentals of optimal control and prototypical problem formulations. This is followed by the treatment of first-order necessary conditions including the Pontryagin minimum principle, dynamic programming, and the Hamilton–Jacobi–Bellman equation. Singular arcs and bang–bang controls are relevant in the solution of many minimum-time and minimum-fuel problems and so these issues are discussed with the help of examples that have been worked out in detail.This chapter then turns towards direct and indirect numericalmethods suitable for solving large-scale optimal control problems numerically.The chapter concludes with an example relating to the calculation of an optimal track curvature estimate from global positioning system (GPS) data.
最优控制
第八章主要讨论非线性最优控制及其应用。本章首先介绍最优控制的基本原理和典型问题公式。其次是一阶必要条件的处理,包括庞特里亚金最小原理、动态规划和汉密尔顿-雅可比-贝尔曼方程。奇异弧和砰砰控制涉及到许多最短时间和最短燃料问题的求解,因此本文结合已详细算例对这些问题进行了讨论。然后,本章转向直接和间接的数值方法,适用于解决大规模的最优控制问题。最后给出了一个基于全球定位系统(GPS)数据的最优轨迹曲率估计的计算实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信