NodeLeaper: Lower Overhead Oblivious AVL Tree

Yao Liu, Qingkai Zeng, Pinghai Yuan
{"title":"NodeLeaper: Lower Overhead Oblivious AVL Tree","authors":"Yao Liu, Qingkai Zeng, Pinghai Yuan","doi":"10.1109/Trustcom/BigDataSE/ICESS.2017.275","DOIUrl":null,"url":null,"abstract":"Obliviousness is crypto primitives which intent to hide access pattern. Although ORAM is strongest crypto model, it incurs significant overhead. Elaine Shi et. al. propose Obliviousness Data Structrue (ODS) that makes a great theriotical improvement comparing to general ORAM algorithm, in case of the data blocks exhibit some degree of access predictability. Take AVL tree as an example, when all data blocks are organized as one AVL tree, every nodes (data blocks) contain position information points to both of its child node. As such, the client can immediately obtain the next position to be accessed instead of issuing another ORAM access to the server for a PosMap lookup. Also, the algorithm need extra client space for updating the AVL tree.In this paper, we introduce oblivious AVL tree NodeLeaper, NodeLeaper for short, which enables position information of all child nodes to share part of bits. As such one can store multiple positions for is child and grandson node positions with same block size. In this way, the search can be processed in a leap manner. As a result, NodeLeaper theriotically needs less ORAM accessand client space for node updating than ODS.","PeriodicalId":170253,"journal":{"name":"2017 IEEE Trustcom/BigDataSE/ICESS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Trustcom/BigDataSE/ICESS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Obliviousness is crypto primitives which intent to hide access pattern. Although ORAM is strongest crypto model, it incurs significant overhead. Elaine Shi et. al. propose Obliviousness Data Structrue (ODS) that makes a great theriotical improvement comparing to general ORAM algorithm, in case of the data blocks exhibit some degree of access predictability. Take AVL tree as an example, when all data blocks are organized as one AVL tree, every nodes (data blocks) contain position information points to both of its child node. As such, the client can immediately obtain the next position to be accessed instead of issuing another ORAM access to the server for a PosMap lookup. Also, the algorithm need extra client space for updating the AVL tree.In this paper, we introduce oblivious AVL tree NodeLeaper, NodeLeaper for short, which enables position information of all child nodes to share part of bits. As such one can store multiple positions for is child and grandson node positions with same block size. In this way, the search can be processed in a leap manner. As a result, NodeLeaper theriotically needs less ORAM accessand client space for node updating than ODS.
NodeLeaper:低开销无关联AVL树
遗忘是一种意图隐藏访问模式的密码原语。虽然ORAM是最强的加密模型,但它会产生很大的开销。Elaine Shi等人提出了遗忘数据结构(ODS),在数据块表现出一定程度的访问可预测性的情况下,与一般的ORAM算法相比,它在理论上有了很大的改进。以AVL树为例,当所有数据块组织成一棵AVL树时,每个节点(数据块)都包含指向其两个子节点的位置信息。因此,客户端可以立即获得下一个要访问的位置,而不是向服务器发出另一个ORAM访问以进行PosMap查找。此外,该算法需要额外的客户端空间来更新AVL树。在本文中,我们引入了遗忘AVL树NodeLeaper,简称NodeLeaper,它使所有子节点的位置信息共享部分位。因此,可以为具有相同块大小的子节点和孙子节点存储多个位置。这样,搜索就可以以跳跃式的方式进行。因此,理论上NodeLeaper比ODS需要更少的ORAM访问客户端空间进行节点更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信