On the program size of perfect and universal hash functions

K. Mehlhorn
{"title":"On the program size of perfect and universal hash functions","authors":"K. Mehlhorn","doi":"10.1109/SFCS.1982.80","DOIUrl":null,"url":null,"abstract":"We address the question of program size of of perfect and universal hash functions. We prove matching upper and lower bounds (up to constant factors) on program size. Furthermore, we show that minimum or nearly minimum size programs can be found efficiently. In addition, these (near) minimum size programs have time complexity at most O(log* N) where N is the size of the universe in the case of perfect hashing, and time complexity 0(1) in the case of universal hashing. Thus for universal hashing programs of minimal size and minimal time complexity have been found.","PeriodicalId":127919,"journal":{"name":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1982.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

Abstract

We address the question of program size of of perfect and universal hash functions. We prove matching upper and lower bounds (up to constant factors) on program size. Furthermore, we show that minimum or nearly minimum size programs can be found efficiently. In addition, these (near) minimum size programs have time complexity at most O(log* N) where N is the size of the universe in the case of perfect hashing, and time complexity 0(1) in the case of universal hashing. Thus for universal hashing programs of minimal size and minimal time complexity have been found.
关于程序大小的完美和通用哈希函数
我们解决了完美和通用哈希函数的程序大小问题。我们证明了在程序大小上匹配上界和下界(直到常数因子)。此外,我们还证明了可以有效地找到最小或接近最小大小的程序。此外,这些(接近)最小大小的程序的时间复杂度最多为O(log* N)(在完全哈希的情况下,N是宇宙的大小),而在通用哈希的情况下,时间复杂度为0(1)。因此,对于通用哈希程序的最小尺寸和最小的时间复杂度已经被发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信