{"title":"Whose Track Is It Anyway? Improving Robustness to Tracking Errors with Affinity-based Trajectory Prediction","authors":"Xinshuo Weng, B. Ivanovic, Kris Kitani, M. Pavone","doi":"10.1109/CVPR52688.2022.00646","DOIUrl":null,"url":null,"abstract":"Multi-agent trajectory prediction is critical for planning and decision-making in human-interactive autonomous systems, such as self-driving cars. However, most prediction models are developed separately from their upstream perception (detection and tracking) modules, assuming ground truth past trajectories as inputs. As a result, their performance degrades significantly when using real-world noisy tracking results as inputs. This is typically caused by the propagation of errors from tracking to prediction, such as noisy tracks, fragments and identity switches. To alleviate this propagation of errors, we propose a new prediction paradigm that uses detections and their affinity matrices across frames as inputs, removing the need for error- prone data association during tracking. Since affinity matrices contain “soft” information about the similarity and identity of detections across frames, making prediction directly from affinity matrices retains strictly more information than making prediction from the tracklets generated by data association. Experiments on large-scale, real-world autonomous driving datasets show that our affinity-based prediction scheme 11Our project website is at https://www.xinshuoweng.com/projects/Affinipred. reduces overall prediction errors by up to 57.9%, in comparison to standard prediction pipelines that use tracklets as inputs, with even more significant error reduction (up to 88.6%) if restricting the evaluation to challenging scenarios with tracking errors.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.00646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Multi-agent trajectory prediction is critical for planning and decision-making in human-interactive autonomous systems, such as self-driving cars. However, most prediction models are developed separately from their upstream perception (detection and tracking) modules, assuming ground truth past trajectories as inputs. As a result, their performance degrades significantly when using real-world noisy tracking results as inputs. This is typically caused by the propagation of errors from tracking to prediction, such as noisy tracks, fragments and identity switches. To alleviate this propagation of errors, we propose a new prediction paradigm that uses detections and their affinity matrices across frames as inputs, removing the need for error- prone data association during tracking. Since affinity matrices contain “soft” information about the similarity and identity of detections across frames, making prediction directly from affinity matrices retains strictly more information than making prediction from the tracklets generated by data association. Experiments on large-scale, real-world autonomous driving datasets show that our affinity-based prediction scheme 11Our project website is at https://www.xinshuoweng.com/projects/Affinipred. reduces overall prediction errors by up to 57.9%, in comparison to standard prediction pipelines that use tracklets as inputs, with even more significant error reduction (up to 88.6%) if restricting the evaluation to challenging scenarios with tracking errors.