Deep recommender engine based on efficient product embeddings neural pipeline

Laurentiu Piciu, A. Damian, N. Tapus, Andrei Simion-Constantinescu, B. Dumitrescu
{"title":"Deep recommender engine based on efficient product embeddings neural pipeline","authors":"Laurentiu Piciu, A. Damian, N. Tapus, Andrei Simion-Constantinescu, B. Dumitrescu","doi":"10.1109/ROEDUNET.2018.8514141","DOIUrl":null,"url":null,"abstract":"Predictive analytics systems are currently one of the most important areas of research and development within the Artificial Intelligence domain and particularly in Machine Learning. One of the “holy grails” of predictive analytics is the research and development of the “perfect” recommendation system. In our paper we propose an advanced pipeline model for the multi-task objective of determining product complementarity, similarity and sales prediction using deep neural models applied to big-data sequential transaction systems. Our highly parallelized hybrid pipeline consists of both unsupervised and supervised models, used for the objectives of generating semantic product embeddings and predicting sales, respectively. Our experimentation andbenchmarking havebeen done using very large pharma-industry retailer Big Data stream.","PeriodicalId":407088,"journal":{"name":"2018 17th RoEduNet Conference: Networking in Education and Research (RoEduNet)","volume":"54 75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th RoEduNet Conference: Networking in Education and Research (RoEduNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROEDUNET.2018.8514141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Predictive analytics systems are currently one of the most important areas of research and development within the Artificial Intelligence domain and particularly in Machine Learning. One of the “holy grails” of predictive analytics is the research and development of the “perfect” recommendation system. In our paper we propose an advanced pipeline model for the multi-task objective of determining product complementarity, similarity and sales prediction using deep neural models applied to big-data sequential transaction systems. Our highly parallelized hybrid pipeline consists of both unsupervised and supervised models, used for the objectives of generating semantic product embeddings and predicting sales, respectively. Our experimentation andbenchmarking havebeen done using very large pharma-industry retailer Big Data stream.
基于高效产品嵌入神经管道的深度推荐引擎
预测分析系统是目前人工智能领域,特别是机器学习领域最重要的研究和开发领域之一。预测分析的“圣杯”之一是“完美”推荐系统的研究和开发。在我们的论文中,我们提出了一个先进的管道模型,用于确定产品互补性,相似性和销售预测的多任务目标,使用深度神经模型应用于大数据顺序交易系统。我们高度并行化的混合管道由无监督和有监督模型组成,分别用于生成语义产品嵌入和预测销售。我们的实验和基准测试是使用非常大的制药行业零售商大数据流完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信