Empirical Evidence on Gamification and Learning Analytics (GaLA): What is Missing?

A. H. Metwally, A. Tlili, A. Yousef, Ronghuai Huang, L. Nacke
{"title":"Empirical Evidence on Gamification and Learning Analytics (GaLA): What is Missing?","authors":"A. H. Metwally, A. Tlili, A. Yousef, Ronghuai Huang, L. Nacke","doi":"10.1109/ICALT55010.2022.00040","DOIUrl":null,"url":null,"abstract":"The growing adoption of learning analytics (LA) approaches and data mining (DM) techniques using educational gamification data sets is reflected in increased publications on this topic. However, with different gamified contexts and a variety of LA methods available, no comprehensive review summarized the obtained findings. Therefore, this research aims to identify studies’ characteristics, objectives, and methods used in gamification learning analytics (GaLA) research. To identify these, this study comprehensively reviewed the literature of 24 studies selected from an initial pool of 221 search results. The findings show that GaLA methods can be categorized into: visualization, data mining, social network analysis (SNA), statistics, and correlations. In conclusion, GaLA is defined as a data-driven approach using various methods of data analysis and mining techniques in gamified contexts for collecting, analyzing, and reporting data to assess or enhance the gameful experience, understand student behaviour, and improve learning outcomes.","PeriodicalId":221464,"journal":{"name":"2022 International Conference on Advanced Learning Technologies (ICALT)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Learning Technologies (ICALT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT55010.2022.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The growing adoption of learning analytics (LA) approaches and data mining (DM) techniques using educational gamification data sets is reflected in increased publications on this topic. However, with different gamified contexts and a variety of LA methods available, no comprehensive review summarized the obtained findings. Therefore, this research aims to identify studies’ characteristics, objectives, and methods used in gamification learning analytics (GaLA) research. To identify these, this study comprehensively reviewed the literature of 24 studies selected from an initial pool of 221 search results. The findings show that GaLA methods can be categorized into: visualization, data mining, social network analysis (SNA), statistics, and correlations. In conclusion, GaLA is defined as a data-driven approach using various methods of data analysis and mining techniques in gamified contexts for collecting, analyzing, and reporting data to assess or enhance the gameful experience, understand student behaviour, and improve learning outcomes.
游戏化和学习分析(GaLA)的经验证据:缺失了什么?
越来越多的关于这一主题的出版物反映了使用教育游戏化数据集的学习分析(LA)方法和数据挖掘(DM)技术的日益普及。然而,由于不同的游戏化背景和各种可用的LA方法,没有全面的综述总结所获得的发现。因此,本研究旨在确定游戏化学习分析(GaLA)研究中使用的研究特征、目标和方法。为了确定这些因素,本研究全面回顾了从221个搜索结果初始池中选择的24项研究的文献。研究结果表明,GaLA方法可分为可视化、数据挖掘、社会网络分析(SNA)、统计和关联。总之,GaLA被定义为一种数据驱动的方法,在游戏化环境中使用各种数据分析和挖掘技术来收集、分析和报告数据,以评估或增强游戏体验,了解学生行为,并改善学习成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信