Performance analysis of fuzzy techniques hierarchical aggregation functions decision trees and Support Vector Machine (SVM)for the classification of epilepsy risk levels from EEG signals

R. Harikumar, T. Vijaykumar, C. Palanisamy
{"title":"Performance analysis of fuzzy techniques hierarchical aggregation functions decision trees and Support Vector Machine (SVM)for the classification of epilepsy risk levels from EEG signals","authors":"R. Harikumar, T. Vijaykumar, C. Palanisamy","doi":"10.1109/RAICS.2011.6069364","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to compare the performance of Hierarchical Soft (max-min) Decision Trees and Support Vector Machine (SVM) in optimization of fuzzy outputs for the classification of epilepsy risk levels from EEG (Electroencephalogram) signals. The fuzzy pre classifier is used to classify the risk levels of epilepsy based on extracted parameters like energy, variance, peaks, sharp and spike waves, duration, events and covariance from the EEG signals of the patient. Hierarchical Soft Decision Tree (HDT post classifiers with max-min criteria of four types) and Support Vector Machine (SVM) are applied on the classified data to identify the optimized risk level (singleton) which characterizes the patient's risk level. The efficacy of the above methods is compared based on the bench mark parameters such as Performance Index (PI), and Quality Value (QV).","PeriodicalId":394515,"journal":{"name":"2011 IEEE Recent Advances in Intelligent Computational Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Recent Advances in Intelligent Computational Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2011.6069364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The objective of this paper is to compare the performance of Hierarchical Soft (max-min) Decision Trees and Support Vector Machine (SVM) in optimization of fuzzy outputs for the classification of epilepsy risk levels from EEG (Electroencephalogram) signals. The fuzzy pre classifier is used to classify the risk levels of epilepsy based on extracted parameters like energy, variance, peaks, sharp and spike waves, duration, events and covariance from the EEG signals of the patient. Hierarchical Soft Decision Tree (HDT post classifiers with max-min criteria of four types) and Support Vector Machine (SVM) are applied on the classified data to identify the optimized risk level (singleton) which characterizes the patient's risk level. The efficacy of the above methods is compared based on the bench mark parameters such as Performance Index (PI), and Quality Value (QV).
模糊技术、层次聚合函数、决策树和支持向量机在脑电信号癫痫风险等级分类中的性能分析
本文的目的是比较层次软(最大-最小)决策树和支持向量机(SVM)在优化EEG(脑电图)信号中癫痫风险等级分类的模糊输出方面的性能。利用模糊预分类器从患者的脑电图信号中提取能量、方差、峰值、尖峰和尖峰波、持续时间、事件和协方差等参数,对癫痫的风险等级进行分类。在分类数据上应用层次软决策树(HDT后分类器,具有四种类型的最大最小准则)和支持向量机(SVM)来识别表征患者风险水平的优化风险水平(单例)。基于性能指数(Performance Index, PI)、质量值(Quality Value, QV)等基准参数对上述方法的有效性进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信