A multi-scale human action recognition method based on Laplacian pyramid depth motion images

Chang Li, Qian Huang, Xing Li, Qianhan Wu
{"title":"A multi-scale human action recognition method based on Laplacian pyramid depth motion images","authors":"Chang Li, Qian Huang, Xing Li, Qianhan Wu","doi":"10.1145/3444685.3446284","DOIUrl":null,"url":null,"abstract":"Human action recognition is an active research area in computer vision. Aiming at the lack of spatial muti-scale information for human action recognition, we present a novel framework to recognize human actions from depth video sequences using multi-scale Laplacian pyramid depth motion images (LP-DMI). Each depth frame is projected onto three orthogonal Cartesian planes. Under three views, we generate depth motion images (DMI) and construct Laplacian pyramids as structured multi-scale feature maps which enhances multi-scale dynamic information of motions and reduces redundant static information in human bodies. We further extract the multi-granularity descriptor called LP-DMI-HOG to provide more discriminative features. Finally, we utilize extreme learning machine (ELM) for action classification. Through extensive experiments on the public MSRAction3D datasets, we prove that our method outperforms state-of-the-art benchmarks.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Human action recognition is an active research area in computer vision. Aiming at the lack of spatial muti-scale information for human action recognition, we present a novel framework to recognize human actions from depth video sequences using multi-scale Laplacian pyramid depth motion images (LP-DMI). Each depth frame is projected onto three orthogonal Cartesian planes. Under three views, we generate depth motion images (DMI) and construct Laplacian pyramids as structured multi-scale feature maps which enhances multi-scale dynamic information of motions and reduces redundant static information in human bodies. We further extract the multi-granularity descriptor called LP-DMI-HOG to provide more discriminative features. Finally, we utilize extreme learning machine (ELM) for action classification. Through extensive experiments on the public MSRAction3D datasets, we prove that our method outperforms state-of-the-art benchmarks.
基于拉普拉斯金字塔深度运动图像的多尺度人体动作识别方法
人体动作识别是计算机视觉领域的一个活跃研究领域。针对人体动作识别缺乏空间多尺度信息的问题,提出了一种利用多尺度拉普拉斯金字塔深度运动图像(LP-DMI)从深度视频序列中识别人体动作的新框架。每个深度帧被投影到三个正交的笛卡尔平面上。在三种视图下,我们生成深度运动图像(DMI),并将拉普拉斯金字塔构造为结构化的多尺度特征图,增强了运动的多尺度动态信息,减少了人体中冗余的静态信息。我们进一步提取了称为LP-DMI-HOG的多粒度描述符,以提供更多的判别特征。最后,我们利用极限学习机(ELM)进行动作分类。通过对公共MSRAction3D数据集的广泛实验,我们证明了我们的方法优于最先进的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信