Trajectory-based generic chassis control framework for the MMX-Rover

Walter Schindler, R. Krenn
{"title":"Trajectory-based generic chassis control framework for the MMX-Rover","authors":"Walter Schindler, R. Krenn","doi":"10.1109/AERO53065.2022.9843333","DOIUrl":null,"url":null,"abstract":"Martian Moons eXploration (MMX) is a joint project of the French, German and Japanese space agencies Centre national d'etudes spatiales (CNES), German Aerospace Center (DLR) and Japan Aerospace Exploration Agency (JAXA) for an exploration mission to the moons of Mars, i.e. Phobos and Deimos. CNES and DLR are providing a rover payload to the mother spacecraft of JAXA which is designated to be the first rover to drive in milli-g-environment. Locomotion in milli-g-environment on potentially hazardous terrain with steep slopes and high sinkage raises increased demands on the locomotion subsystem and control algorithms. The MMX-Rover chassis control algorithms (CCA) are embedded as part of the MMX-Rover locomotion software partition in a three layer architecture between the Command and Control Software and the hardware-related Basic Software. This paper proposes a trajectory-based generic chassis control framework as extended chassis control variant for the MMX-Rover. The rover locomotion possibilities are formulated upon a generic rover motion interface to derive analytical solutions for the specialized MMX-Rover locomotion modes. The resulting algebraic chassis control algorithms (A-CCA) are mathematically formulated in detail. A connection to meta-modelling for kinematic locomotion functions is established. The generic chassis control framework can be used to formulate the onboard control algorithms as minimal application code or generic application code. The decision between the minimal or generic code formulation variant practically influences the control software architecture and implementation. The generic chassis control framework is used as a practical analysis and verification tool to ensure the qualification of a geometrically inspired and kinematically simplified control algorithm variant (G-CCA) as flight software candidate. In particular, the algebraic equations originating from the generic chassis control framework are compared to the geometric control algorithms regarding their functional scope, kinematic formulation and practical software implementation. Results for the analysis and verification of G-CCA are shown and their qualification in terms of the locomotion functional coverage and rover motion behavior discussed. The generic chassis control framework contributes to ensure and enhance the functioning and quality of the control algorithms in the MMX-Rover mission context.","PeriodicalId":219988,"journal":{"name":"2022 IEEE Aerospace Conference (AERO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Aerospace Conference (AERO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO53065.2022.9843333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Martian Moons eXploration (MMX) is a joint project of the French, German and Japanese space agencies Centre national d'etudes spatiales (CNES), German Aerospace Center (DLR) and Japan Aerospace Exploration Agency (JAXA) for an exploration mission to the moons of Mars, i.e. Phobos and Deimos. CNES and DLR are providing a rover payload to the mother spacecraft of JAXA which is designated to be the first rover to drive in milli-g-environment. Locomotion in milli-g-environment on potentially hazardous terrain with steep slopes and high sinkage raises increased demands on the locomotion subsystem and control algorithms. The MMX-Rover chassis control algorithms (CCA) are embedded as part of the MMX-Rover locomotion software partition in a three layer architecture between the Command and Control Software and the hardware-related Basic Software. This paper proposes a trajectory-based generic chassis control framework as extended chassis control variant for the MMX-Rover. The rover locomotion possibilities are formulated upon a generic rover motion interface to derive analytical solutions for the specialized MMX-Rover locomotion modes. The resulting algebraic chassis control algorithms (A-CCA) are mathematically formulated in detail. A connection to meta-modelling for kinematic locomotion functions is established. The generic chassis control framework can be used to formulate the onboard control algorithms as minimal application code or generic application code. The decision between the minimal or generic code formulation variant practically influences the control software architecture and implementation. The generic chassis control framework is used as a practical analysis and verification tool to ensure the qualification of a geometrically inspired and kinematically simplified control algorithm variant (G-CCA) as flight software candidate. In particular, the algebraic equations originating from the generic chassis control framework are compared to the geometric control algorithms regarding their functional scope, kinematic formulation and practical software implementation. Results for the analysis and verification of G-CCA are shown and their qualification in terms of the locomotion functional coverage and rover motion behavior discussed. The generic chassis control framework contributes to ensure and enhance the functioning and quality of the control algorithms in the MMX-Rover mission context.
MMX-Rover基于轨迹的通用底盘控制框架
火星卫星探测(MMX)是法国、德国和日本空间机构国家空间研究中心(CNES)、德国航空航天中心(DLR)和日本宇宙航空研究开发机构(JAXA)的一个联合项目,目的是探测火星的卫星,即火卫一和火卫二。CNES和DLR正在为JAXA的母飞船提供一个月球车有效载荷,该母飞船被指定为第一个在微重力环境中行驶的月球车。在陡坡高下沉的潜在危险地形上进行微重力环境下的运动,对运动子系统和控制算法提出了更高的要求。MMX-Rover底盘控制算法(CCA)作为MMX-Rover移动软件分区的一部分,嵌入在命令与控制软件和硬件相关基本软件之间的三层架构中。本文提出了一种基于轨迹的通用底盘控制框架,作为MMX-Rover底盘控制的扩展变体。在通用的漫游者运动界面上制定了漫游者运动的可能性,以导出专门的mmx -漫游者运动模式的解析解。所得到的代数底盘控制算法(A-CCA)在数学上进行了详细的表述。建立了与运动学运动函数元建模的联系。通用底盘控制框架可用于将板载控制算法制定为最小应用代码或通用应用代码。最小或通用代码表述变体之间的选择实际上影响着控制软件的体系结构和实现。采用通用底盘控制框架作为实际分析和验证工具,以确保几何启发和运动简化控制算法变体(G-CCA)作为候选飞行软件的资格。特别地,将源自通用底盘控制框架的代数方程与几何控制算法在功能范围、运动公式和实际软件实现方面进行了比较。给出了G-CCA的分析和验证结果,并讨论了其在运动功能覆盖和漫游车运动行为方面的资格。通用底盘控制框架有助于确保和提高MMX-Rover任务环境下控制算法的功能和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信