Computing approximate value of the pbm index for counting number of clusters using genetic algorithm

M. K. Pakhira, Amrita Dutta
{"title":"Computing approximate value of the pbm index for counting number of clusters using genetic algorithm","authors":"M. K. Pakhira, Amrita Dutta","doi":"10.1109/ReTIS.2011.6146875","DOIUrl":null,"url":null,"abstract":"Determining number of clusters present in a data set is an important problem in clustering. There exist very few techniques that can solve this problem satisfactorily. Most of these techniques are expensive with regard to computation time. Recently VAT (Visual Assessment of Tendency for clustering) images of data sets are used for this purpose along with GA and a validity index. A series of diagonal dark blocks in the VAT image represents possible clusters present in the data set. We shall show an efficient way to compute an approximate value of PBM index directly from the VAT image. It is shown that the present approach is able to suitable index values for finding appropriate number of dark blocks (clusters), under a GA framework.","PeriodicalId":137916,"journal":{"name":"2011 International Conference on Recent Trends in Information Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Recent Trends in Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReTIS.2011.6146875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Determining number of clusters present in a data set is an important problem in clustering. There exist very few techniques that can solve this problem satisfactorily. Most of these techniques are expensive with regard to computation time. Recently VAT (Visual Assessment of Tendency for clustering) images of data sets are used for this purpose along with GA and a validity index. A series of diagonal dark blocks in the VAT image represents possible clusters present in the data set. We shall show an efficient way to compute an approximate value of PBM index directly from the VAT image. It is shown that the present approach is able to suitable index values for finding appropriate number of dark blocks (clusters), under a GA framework.
利用遗传算法计算聚类数的pbm指数近似值
确定数据集中存在的聚类数量是聚类中的一个重要问题。目前很少有技术能令人满意地解决这个问题。就计算时间而言,这些技术中的大多数都是昂贵的。最近,数据集的VAT(聚类趋势的视觉评估)图像与GA和有效性指数一起用于此目的。VAT图像中的一系列对角线黑色块表示数据集中可能存在的群集。我们将展示一种有效的方法来直接从增值税图像计算PBM指数的近似值。结果表明,在遗传算法框架下,该方法能够找到合适的索引值来寻找合适数量的暗块(聚类)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信