Profiling Memory Vulnerability of Big-Data Applications

N. Rameshan, R. Birke, Leandro Navarro-Moldes, Vladimir Vlassov, B. Urgaonkar, G. Kesidis, M. Schmatz, L. Chen
{"title":"Profiling Memory Vulnerability of Big-Data Applications","authors":"N. Rameshan, R. Birke, Leandro Navarro-Moldes, Vladimir Vlassov, B. Urgaonkar, G. Kesidis, M. Schmatz, L. Chen","doi":"10.1109/DSN-W.2016.58","DOIUrl":null,"url":null,"abstract":"Motivated by the increasing popularity of hosting in-memory big-data analytics in cloud, we present a profiling methodology that can understand how different memory subsystems, i.e., cache and memory bandwidth, are susceptible to the impact of interference from co-located applications. We first describe the design of the proposed tool and demonstrate a case study consisting of five Spark applications on real-life data set.","PeriodicalId":184154,"journal":{"name":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN-W.2016.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Motivated by the increasing popularity of hosting in-memory big-data analytics in cloud, we present a profiling methodology that can understand how different memory subsystems, i.e., cache and memory bandwidth, are susceptible to the impact of interference from co-located applications. We first describe the design of the proposed tool and demonstrate a case study consisting of five Spark applications on real-life data set.
大数据应用内存漏洞分析
由于在云中托管内存大数据分析的日益普及,我们提出了一种分析方法,可以了解不同的内存子系统(即缓存和内存带宽)如何容易受到来自同址应用程序干扰的影响。我们首先描述了所建议的工具的设计,并演示了一个案例研究,该案例研究由五个基于现实数据集的Spark应用程序组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信