Wafer Map Defect Pattern Recognition using Imbalanced Datasets

T. Tziolas, T. Theodosiou, K. Papageorgiou, A. Rapti, Nikos Dimitriou, D. Tzovaras, E. Papageorgiou
{"title":"Wafer Map Defect Pattern Recognition using Imbalanced Datasets","authors":"T. Tziolas, T. Theodosiou, K. Papageorgiou, A. Rapti, Nikos Dimitriou, D. Tzovaras, E. Papageorgiou","doi":"10.1109/IISA56318.2022.9904402","DOIUrl":null,"url":null,"abstract":"The accurate and automatic inspection of wafer maps is vital for semiconductor engineers to identify defect causes and to optimize the wafer fabrication process. This research work seeks to address the pattern recognition task for the identification of defects in wafer maps, by developing a deep Convolutional Neural Network (CNN) classifier. The proposed CNN-based model utilizes various pre- and post-processing tools and is applied on the public but highly imbalanced industrial dataset WM-811K. To handle imbalance, a methodology of treating each class individually is proposed by applying different processing techniques for down-sampling, splitting and data augmentation based on the number of samples. The proposed model achieves 95.3% accuracy and 93.78% macro F1-score and outperformes other models in the related literature concerning the identification of the majority of classes.","PeriodicalId":217519,"journal":{"name":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA56318.2022.9904402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate and automatic inspection of wafer maps is vital for semiconductor engineers to identify defect causes and to optimize the wafer fabrication process. This research work seeks to address the pattern recognition task for the identification of defects in wafer maps, by developing a deep Convolutional Neural Network (CNN) classifier. The proposed CNN-based model utilizes various pre- and post-processing tools and is applied on the public but highly imbalanced industrial dataset WM-811K. To handle imbalance, a methodology of treating each class individually is proposed by applying different processing techniques for down-sampling, splitting and data augmentation based on the number of samples. The proposed model achieves 95.3% accuracy and 93.78% macro F1-score and outperformes other models in the related literature concerning the identification of the majority of classes.
基于不平衡数据集的晶圆图缺陷模式识别
晶圆图的精确和自动检测对于半导体工程师识别缺陷原因和优化晶圆制造工艺至关重要。本研究工作旨在通过开发深度卷积神经网络(CNN)分类器来解决晶圆图中缺陷识别的模式识别任务。本文提出的基于cnn的模型利用了多种预处理和后处理工具,并应用于公开但高度不平衡的工业数据集WM-811K。为了解决不平衡问题,提出了一种基于样本数量,采用降采样、分割和数据增强等不同处理技术,对每个类别进行单独处理的方法。本文提出的模型准确率达到95.3%,宏观f1得分达到93.78%,在大多数类别的识别上优于相关文献中的其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信