Derandomization and distinguishing complexity

E. Allender, M. Koucký, Detlef Ronneburger, Sambuddha Roy
{"title":"Derandomization and distinguishing complexity","authors":"E. Allender, M. Koucký, Detlef Ronneburger, Sambuddha Roy","doi":"10.1109/CCC.2003.1214421","DOIUrl":null,"url":null,"abstract":"We continue an investigation of resource-bounded Kolmogorov complexity and derandomization techniques begun in [E. Allender (2001), E. Allender et al., (2002)]. We introduce nondeterministic time-bounded Kolmogorov complexity measures (KNt and KNT) and examine the properties of these measures using constructions of hitting set generators for nondeterministic circuits [P. B. Miltersen et al., (1999), R. Shaltiel et al., (2001)]. We observe that KNt bears many similarities to the nondeterministic distinguishing complexity CND of [H. Buhrman et al., (2002)]. This motivates the definition of a new notion of time-bounded distinguishing complexity KDt, as an intermediate notion with connections to the class FewEXP. The set of KDt-random strings is complete for EXP under P/poly reductions. Most of the notions of resource-bounded Kolmogorov complexity discussed here and in [E. Allender (2001), E. Allender et al., (2002)] have close connections to circuit size (on different types of circuits). We extend this framework to define notions of Kolmogorov complexity KB and KF that are related to branching program size and formula size, respectively. The sets of KB- and KF-random strings lie in coNP; we show that oracle access to these sets enables one to factor Blum integers. We obtain related intractability results for approximating minimum formula size, branching program size, and circuit size. The NEXP/spl sube/NC and NEXP/spl sube/L/poly questions are shown to be equivalent to conditions about the KF and KB complexity of sets in P.","PeriodicalId":286846,"journal":{"name":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2003.1214421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We continue an investigation of resource-bounded Kolmogorov complexity and derandomization techniques begun in [E. Allender (2001), E. Allender et al., (2002)]. We introduce nondeterministic time-bounded Kolmogorov complexity measures (KNt and KNT) and examine the properties of these measures using constructions of hitting set generators for nondeterministic circuits [P. B. Miltersen et al., (1999), R. Shaltiel et al., (2001)]. We observe that KNt bears many similarities to the nondeterministic distinguishing complexity CND of [H. Buhrman et al., (2002)]. This motivates the definition of a new notion of time-bounded distinguishing complexity KDt, as an intermediate notion with connections to the class FewEXP. The set of KDt-random strings is complete for EXP under P/poly reductions. Most of the notions of resource-bounded Kolmogorov complexity discussed here and in [E. Allender (2001), E. Allender et al., (2002)] have close connections to circuit size (on different types of circuits). We extend this framework to define notions of Kolmogorov complexity KB and KF that are related to branching program size and formula size, respectively. The sets of KB- and KF-random strings lie in coNP; we show that oracle access to these sets enables one to factor Blum integers. We obtain related intractability results for approximating minimum formula size, branching program size, and circuit size. The NEXP/spl sube/NC and NEXP/spl sube/L/poly questions are shown to be equivalent to conditions about the KF and KB complexity of sets in P.
非随机化和区分复杂性
我们继续研究资源有限的Kolmogorov复杂性和非随机化技术,开始于[E]。Allender (2001), E. Allender等人,(2002)]。我们引入了不确定的有界Kolmogorov复杂度测度(KNt和KNt),并利用不确定电路的碰撞集生成器构造检验了这些测度的性质[P]。B. Miltersen et al., (1999); R. Shaltiel et al.,(2001)。我们观察到KNt与[H]的不确定性区分复杂性CND有许多相似之处。Buhrman et al.,(2002)。这激发了对有时间限制的区分复杂度KDt的新概念的定义,作为与类FewEXP有连接的中间概念。对于P/poly约简下的EXP, kdt -随机字符串集是完备的。本文和文献[E]中讨论的资源界Kolmogorov复杂性的大多数概念。Allender (2001), E. Allender et al.,(2002)]与电路尺寸有密切联系(在不同类型的电路上)。我们扩展这个框架来定义Kolmogorov复杂度KB和KF的概念,它们分别与分支程序大小和公式大小相关。KB-和kf -随机字符串的集合在coNP中;我们将展示oracle对这些集合的访问使我们能够对Blum整数进行因式分解。我们得到了近似最小公式大小、分支程序大小和电路大小的相关难解性结果。证明了NEXP/spl sub /NC和NEXP/spl sub /L/poly问题等价于P中集合的KF和KB复杂度的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信