{"title":"Statistical Inference for a Simple Step Stress Model with Competing Risks Based on Generalized Type-I Hybrid Censoring","authors":"S. Mao, Bin Liu, Yimin Shi","doi":"10.21078/JSSI-2021-533-16","DOIUrl":null,"url":null,"abstract":"Abstract This paper investigates a simple step-stress accelerated lifetime test (SSALT) model for the inferential analysis of exponential competing risks data. A generalized type-I hybrid censoring scheme is employed to improve the efficiency and controllability of the test. Firstly, the MLEs for parameters are established based on the cumulative exposure model (CEM). Then the conditional moment generating function (MGF) for unknown parameters is set up using conditional expectation and multiple integral techniques. Thirdly, confidence intervals (CIs) are constructed by the exact MGF-based method, the approximate normality-based method, and the bias-corrected and accelerated (BCa) percentile bootstrap method. Finally, we present simulation studies and an illustrative example to compare the performances of different methods.","PeriodicalId":258223,"journal":{"name":"Journal of Systems Science and Information","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Science and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21078/JSSI-2021-533-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract This paper investigates a simple step-stress accelerated lifetime test (SSALT) model for the inferential analysis of exponential competing risks data. A generalized type-I hybrid censoring scheme is employed to improve the efficiency and controllability of the test. Firstly, the MLEs for parameters are established based on the cumulative exposure model (CEM). Then the conditional moment generating function (MGF) for unknown parameters is set up using conditional expectation and multiple integral techniques. Thirdly, confidence intervals (CIs) are constructed by the exact MGF-based method, the approximate normality-based method, and the bias-corrected and accelerated (BCa) percentile bootstrap method. Finally, we present simulation studies and an illustrative example to compare the performances of different methods.