Data-driven state-of-charge estimation of the Panasonic 18650PF Li-ion cell using deep forward neural networks

A. B. de Lima, M. Salles, J. Cardoso
{"title":"Data-driven state-of-charge estimation of the Panasonic 18650PF Li-ion cell using deep forward neural networks","authors":"A. B. de Lima, M. Salles, J. Cardoso","doi":"10.1109/INDUSCON51756.2021.9529774","DOIUrl":null,"url":null,"abstract":"The State-of-Charge (SOC) is a key parameter for the proper functioning of the Battery Management System (BMS) of lithium-ion (Li-ion) batteries, and indicates the amount of charge remaining in the battery. In this work, we present a novel empirical study for the data-driven estimation of the SOC of the Panasonic 18650PF Li-ion cell using Deep Forward Neural Networks (DFNN) and optimization algorithms with adaptive learning rates. Specifically, we model the Urban Dynamometer Driving Schedule (UDDS) drive cycle. Our results suggest that the choice of the optimization algorithm affects the performance of the model and that a DFNN with five hidden layers is the model of optimal capacity when considering 256 units per layer. This optimal DFNN is able to estimate the SOC of the 18650PF Li-ion cell with an error smaller than 0.12% over a 25o C dataset using the Adamax optimization algorithm.","PeriodicalId":344476,"journal":{"name":"2021 14th IEEE International Conference on Industry Applications (INDUSCON)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th IEEE International Conference on Industry Applications (INDUSCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDUSCON51756.2021.9529774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The State-of-Charge (SOC) is a key parameter for the proper functioning of the Battery Management System (BMS) of lithium-ion (Li-ion) batteries, and indicates the amount of charge remaining in the battery. In this work, we present a novel empirical study for the data-driven estimation of the SOC of the Panasonic 18650PF Li-ion cell using Deep Forward Neural Networks (DFNN) and optimization algorithms with adaptive learning rates. Specifically, we model the Urban Dynamometer Driving Schedule (UDDS) drive cycle. Our results suggest that the choice of the optimization algorithm affects the performance of the model and that a DFNN with five hidden layers is the model of optimal capacity when considering 256 units per layer. This optimal DFNN is able to estimate the SOC of the 18650PF Li-ion cell with an error smaller than 0.12% over a 25o C dataset using the Adamax optimization algorithm.
利用深度前向神经网络对松下18650PF锂离子电池进行数据驱动的充电状态估计
SOC (State-of-Charge)是锂离子电池电池管理系统(Battery Management System, BMS)正常运行的关键参数,反映了电池的剩余电量。在这项工作中,我们提出了一项新的实证研究,用于使用深度前向神经网络(DFNN)和具有自适应学习率的优化算法对松下18650PF锂离子电池的SOC进行数据驱动估计。具体来说,我们建立了城市动力计驾驶计划(UDDS)驾驶循环模型。我们的研究结果表明,优化算法的选择会影响模型的性能,当考虑每层256个单元时,具有5个隐藏层的DFNN是最优容量的模型。该优化DFNN能够在使用Adamax优化算法的25°C数据集上估计18650PF锂离子电池的SOC,误差小于0.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信