COOL-MC: A Comprehensive Tool for Reinforcement Learning and Model Checking

Dennis Gross, N. Jansen, Sebastian Junges, G. Pérez
{"title":"COOL-MC: A Comprehensive Tool for Reinforcement Learning and Model Checking","authors":"Dennis Gross, N. Jansen, Sebastian Junges, G. Pérez","doi":"10.48550/arXiv.2209.07133","DOIUrl":null,"url":null,"abstract":". This paper presents COOL-MC, a tool that integrates state-of-the-art reinforcement learning (RL) and model checking. Specifically, the tool builds upon the OpenAI gym and the probabilistic model checker Storm. COOL-MC provides the following features: (1) a simulator to train RL policies in the OpenAI gym for Markov decision processes (MDPs) that are defined as input for Storm, (2) a new model builder for Storm, which uses callback functions to verify (neural network) RL policies, (3) formal abstractions that relate models and policies specified in OpenAI gym or Storm, and (4) algorithms to obtain bounds on the performance of so-called permissive policies. We describe the components and architecture of COOL-MC and demonstrate its features on multiple benchmark environments.","PeriodicalId":409774,"journal":{"name":"International Symposium on Software Engineering: Theories, Tools, and Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Software Engineering: Theories, Tools, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.07133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

. This paper presents COOL-MC, a tool that integrates state-of-the-art reinforcement learning (RL) and model checking. Specifically, the tool builds upon the OpenAI gym and the probabilistic model checker Storm. COOL-MC provides the following features: (1) a simulator to train RL policies in the OpenAI gym for Markov decision processes (MDPs) that are defined as input for Storm, (2) a new model builder for Storm, which uses callback functions to verify (neural network) RL policies, (3) formal abstractions that relate models and policies specified in OpenAI gym or Storm, and (4) algorithms to obtain bounds on the performance of so-called permissive policies. We describe the components and architecture of COOL-MC and demonstrate its features on multiple benchmark environments.
COOL-MC:一个用于强化学习和模型检查的综合工具
. 本文介绍了COOL-MC,一个集成了最先进的强化学习(RL)和模型检查的工具。具体来说,该工具建立在OpenAI健身房和概率模型检查器Storm之上。COOL-MC提供了以下功能:(1)在OpenAI gym中为定义为Storm输入的马尔可夫决策过程(mdp)训练强化学习策略的模拟器,(2)Storm的新模型构建器,它使用回调函数来验证(神经网络)强化学习策略,(3)将OpenAI gym或Storm中指定的模型和策略关联起来的正式抽象,以及(4)算法以获得所谓的许可策略的性能界限。我们描述了COOL-MC的组件和架构,并在多个基准测试环境中演示了其功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信