Federated Principal Component Analysis for Genome-Wide Association Studies

Anne Hartebrodt, Reza Nasirigerdeh, David B. Blumenthal, Richard Röttger
{"title":"Federated Principal Component Analysis for Genome-Wide Association Studies","authors":"Anne Hartebrodt, Reza Nasirigerdeh, David B. Blumenthal, Richard Röttger","doi":"10.1109/ICDM51629.2021.00127","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) has emerged as a privacy-aware alternative to centralized data analysis, especially for biomedical analyses such as genome-wide association studies (GWAS). The data remains with the owner, which enables studies previously impossible due to privacy protection regulations. Principal component analysis (PCA) is a frequent preprocessing step in GWAS, where the eigenvectors of the sample-by-sample covariance matrix are used as covariates in the statistical tests. Therefore, a federated version of PCA suitable for vertical data partitioning is required for federated GWAS. Existing federated PCA algorithms exchange the complete sample eigenvectors, a potential privacy breach. In this paper, we present a federated PCA algorithm for vertically partitioned data which does not exchange the sample eigenvectors and is hence suitable for federated GWAS. We show that it outperforms existing federated solutions in terms of convergence behavior and scalability. Additionally, we provide a user-friendly privacy-aware web tool to promote acceptance of federated PCA among GWAS researchers.","PeriodicalId":320970,"journal":{"name":"2021 IEEE International Conference on Data Mining (ICDM)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM51629.2021.00127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Federated learning (FL) has emerged as a privacy-aware alternative to centralized data analysis, especially for biomedical analyses such as genome-wide association studies (GWAS). The data remains with the owner, which enables studies previously impossible due to privacy protection regulations. Principal component analysis (PCA) is a frequent preprocessing step in GWAS, where the eigenvectors of the sample-by-sample covariance matrix are used as covariates in the statistical tests. Therefore, a federated version of PCA suitable for vertical data partitioning is required for federated GWAS. Existing federated PCA algorithms exchange the complete sample eigenvectors, a potential privacy breach. In this paper, we present a federated PCA algorithm for vertically partitioned data which does not exchange the sample eigenvectors and is hence suitable for federated GWAS. We show that it outperforms existing federated solutions in terms of convergence behavior and scalability. Additionally, we provide a user-friendly privacy-aware web tool to promote acceptance of federated PCA among GWAS researchers.
全基因组关联研究的联合主成分分析
联邦学习(FL)已成为集中式数据分析的一种具有隐私意识的替代方案,特别是对于生物医学分析,如全基因组关联研究(GWAS)。这些数据仍然属于所有者,这使得以前由于隐私保护规定而无法进行的研究成为可能。主成分分析(PCA)是GWAS中常见的预处理步骤,其中样本间协方差矩阵的特征向量被用作统计检验中的协变量。因此,联邦GWAS需要适合垂直数据分区的联邦版本的PCA。现有的联邦PCA算法交换完整的样本特征向量,这是一个潜在的隐私泄露。本文提出了一种垂直分割数据的联邦主成分分析算法,该算法不需要交换样本特征向量,因此适用于联邦GWAS。我们证明了它在收敛行为和可伸缩性方面优于现有的联邦解决方案。此外,我们提供了一个用户友好的隐私意识网络工具,以促进GWAS研究人员对联合PCA的接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信