{"title":"Automated puzzle difficulty estimation","authors":"M. V. Kreveld, M. Löffler, P. Mutser","doi":"10.1109/CIG.2015.7317913","DOIUrl":null,"url":null,"abstract":"We introduce a method for automatically rating the difficulty of puzzle game levels. Our method takes multiple aspects of the levels of these games, such as level size, and combines these into a difficulty function. It can simply be adapted to most puzzle games, and we test it on three different ones: Flow, Lazors and Move. We conducted a user study to discover how difficult players find the levels of a set and use this data to train the difficulty function to match the user-provided ratings. Our experiments show that the difficulty function is capable of rating levels with an average error of approximately one point in Lazors and Move, and less than half a point in Flow, on a difficulty scale of 1-10.","PeriodicalId":244862,"journal":{"name":"2015 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2015.7317913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We introduce a method for automatically rating the difficulty of puzzle game levels. Our method takes multiple aspects of the levels of these games, such as level size, and combines these into a difficulty function. It can simply be adapted to most puzzle games, and we test it on three different ones: Flow, Lazors and Move. We conducted a user study to discover how difficult players find the levels of a set and use this data to train the difficulty function to match the user-provided ratings. Our experiments show that the difficulty function is capable of rating levels with an average error of approximately one point in Lazors and Move, and less than half a point in Flow, on a difficulty scale of 1-10.