{"title":"Reference Eigen-Environment and Speaker Weighting for Robust Speech Recognition","authors":"Y. Liao, Hung-Hsiang Fang, C. Yang","doi":"10.1109/CHINSL.2008.ECP.31","DOIUrl":null,"url":null,"abstract":"In this paper a reference eigen-environment and speaker weighting (RESW) method is proposed for online HMM adaptation. RESW establishes multiple eigen-MLLR subspaces as the set of a priori knowledge according to certain affecting factors, such as noise type, SNR, male and female. It then projects an input test utterance simultaneously into the set of eigen-subspaces and optimally synthesizes out a set of suitable HMMs. The proposed RESW was evaluated on Aurora 2 multi- condition training task. Experimental results showed that average word error rate (WER) of 6.11% was achieved. RESW not only outperformed the multi-condition training baseline (Multi-Con., 13.72%) but also the blind ETSI advanced DSR front-end (ETSI-Adv., 8.65%) and the histogram equalization (HEQ, 8.66%) and the non-blind reference model weighting (RMW, 7.29%) and Eigen-MLLR (6.14%) approaches.","PeriodicalId":291958,"journal":{"name":"2008 6th International Symposium on Chinese Spoken Language Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINSL.2008.ECP.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper a reference eigen-environment and speaker weighting (RESW) method is proposed for online HMM adaptation. RESW establishes multiple eigen-MLLR subspaces as the set of a priori knowledge according to certain affecting factors, such as noise type, SNR, male and female. It then projects an input test utterance simultaneously into the set of eigen-subspaces and optimally synthesizes out a set of suitable HMMs. The proposed RESW was evaluated on Aurora 2 multi- condition training task. Experimental results showed that average word error rate (WER) of 6.11% was achieved. RESW not only outperformed the multi-condition training baseline (Multi-Con., 13.72%) but also the blind ETSI advanced DSR front-end (ETSI-Adv., 8.65%) and the histogram equalization (HEQ, 8.66%) and the non-blind reference model weighting (RMW, 7.29%) and Eigen-MLLR (6.14%) approaches.