Improving global exploration of MCMC light transport simulation

M. Sik, Jaroslav Křivánek
{"title":"Improving global exploration of MCMC light transport simulation","authors":"M. Sik, Jaroslav Křivánek","doi":"10.1145/2945078.2945128","DOIUrl":null,"url":null,"abstract":"Markov Chain Monte Carlo (MCMC) has recently received a lot of attention in light transport simulation research [Hanika et al. 2015; Hachisuka et al. 2014]. While these methods aim at high quality sampling of local extremes of the path space (so called local exploration), the other issue - discovering these extremes - has been so far neglected. Poor global exploration results in oversampling some parts of the paths space, while undersampling or completely missing other parts (see Fig. 1). Such behavior of MCMC-based light transport algorithms limits their use in practice, since we can never tell for sure whether the image has already converged.","PeriodicalId":417667,"journal":{"name":"ACM SIGGRAPH 2016 Posters","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2016 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2945078.2945128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Markov Chain Monte Carlo (MCMC) has recently received a lot of attention in light transport simulation research [Hanika et al. 2015; Hachisuka et al. 2014]. While these methods aim at high quality sampling of local extremes of the path space (so called local exploration), the other issue - discovering these extremes - has been so far neglected. Poor global exploration results in oversampling some parts of the paths space, while undersampling or completely missing other parts (see Fig. 1). Such behavior of MCMC-based light transport algorithms limits their use in practice, since we can never tell for sure whether the image has already converged.
完善MCMC轻输运模拟的全球探索
马尔可夫链蒙特卡罗(Markov Chain Monte Carlo, MCMC)最近在轻输运模拟研究中受到了很多关注[Hanika et al. 2015;Hachisuka et al. 2014]。虽然这些方法旨在对路径空间的局部极值进行高质量采样(即所谓的局部探索),但另一个问题-发现这些极值-迄今为止一直被忽视。较差的全局勘探导致路径空间的某些部分过采样,而其他部分则欠采样或完全缺失(见图1)。基于mcmc的光传输算法的这种行为限制了它们在实践中的使用,因为我们永远无法确定图像是否已经收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信