Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties

H. S. Hoang, R. Baraille
{"title":"Adaptive Filter as Efficient Tool for Data Assimilation under Uncertainties","authors":"H. S. Hoang, R. Baraille","doi":"10.5772/intechopen.92194","DOIUrl":null,"url":null,"abstract":"In this contribution, the problem of data assimilation as state estimation for dynamical systems under uncertainties is addressed. This emphasize is put on high-dimensional systems context. Major difficulties in the design of data assimilation algorithms is a concern for computational resources (computational power and memory) and uncertainties (system parameters, statistics of model, and observational errors). The idea of the adaptive filter will be given in detail to see how it is possible to overcome uncertainties as well as to explain the main principle and tools for implementation of the adaptive filter for complex dynamical systems. Simple numerical examples are given to illustrate the principal differences of the AF with the Kalman filter and other methods. The simulation results are presented to compare the performance of the adaptive filter with the Kalman filter.","PeriodicalId":250840,"journal":{"name":"Dynamic Data Assimilation - Beating the Uncertainties","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Data Assimilation - Beating the Uncertainties","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.92194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this contribution, the problem of data assimilation as state estimation for dynamical systems under uncertainties is addressed. This emphasize is put on high-dimensional systems context. Major difficulties in the design of data assimilation algorithms is a concern for computational resources (computational power and memory) and uncertainties (system parameters, statistics of model, and observational errors). The idea of the adaptive filter will be given in detail to see how it is possible to overcome uncertainties as well as to explain the main principle and tools for implementation of the adaptive filter for complex dynamical systems. Simple numerical examples are given to illustrate the principal differences of the AF with the Kalman filter and other methods. The simulation results are presented to compare the performance of the adaptive filter with the Kalman filter.
在这篇贡献中,数据同化作为不确定情况下动态系统状态估计的问题得到了解决。这里强调的是高维系统上下文。数据同化算法设计的主要困难在于计算资源(计算能力和内存)和不确定性(系统参数、模型统计和观测误差)。将详细介绍自适应滤波器的思想,以了解如何克服不确定性,并解释实现复杂动态系统自适应滤波器的主要原理和工具。通过简单的数值算例说明自动对焦与卡尔曼滤波及其他方法的主要区别。仿真结果比较了自适应滤波与卡尔曼滤波的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信