CT image noise reduction based on adaptive wiener filtering with Wavelet packet thresholding

M. Diwakar, M. Kumar
{"title":"CT image noise reduction based on adaptive wiener filtering with Wavelet packet thresholding","authors":"M. Diwakar, M. Kumar","doi":"10.1109/PDGC.2014.7030722","DOIUrl":null,"url":null,"abstract":"Computed Tomography (CT) is streamlined in radiological diagnostics and has become an imperative tool in medical examinations. The difficulty that arises with the demand is to improve CT image quality without increasing dose. In this paper, Wavelet based noise reduction technique is proposed to improve image quality where adaptive Wiener filtering and Wavelet Packet Threshold (WPT) algorithm are applied. The Noisy CT image is decomposed using DWT, where approximation part is filtered using WPT algorithm and detail part is filtered by the adaptive Wiener filtering. By using the level dependent, the wavelet packet tree coefficients are calculated using optimal linear interpolation shrinkage function. Denoised image is acquired using wavelet packet reconstruction and inverse DWT. The value of the peak signal to noise ratio (PSNR) is used as the measure of image visual quality. Experimental results demonstrate that the proposed method improves the image visual quality in respect of noise removal and edge preservation.","PeriodicalId":311953,"journal":{"name":"2014 International Conference on Parallel, Distributed and Grid Computing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Parallel, Distributed and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2014.7030722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Computed Tomography (CT) is streamlined in radiological diagnostics and has become an imperative tool in medical examinations. The difficulty that arises with the demand is to improve CT image quality without increasing dose. In this paper, Wavelet based noise reduction technique is proposed to improve image quality where adaptive Wiener filtering and Wavelet Packet Threshold (WPT) algorithm are applied. The Noisy CT image is decomposed using DWT, where approximation part is filtered using WPT algorithm and detail part is filtered by the adaptive Wiener filtering. By using the level dependent, the wavelet packet tree coefficients are calculated using optimal linear interpolation shrinkage function. Denoised image is acquired using wavelet packet reconstruction and inverse DWT. The value of the peak signal to noise ratio (PSNR) is used as the measure of image visual quality. Experimental results demonstrate that the proposed method improves the image visual quality in respect of noise removal and edge preservation.
基于小波包阈值自适应维纳滤波的CT图像降噪
计算机断层扫描(CT)在放射诊断方面得到了简化,并已成为医学检查中必不可少的工具。在不增加剂量的情况下提高CT图像质量是这一要求所带来的困难。本文提出了一种基于小波的降噪技术,采用自适应维纳滤波和小波包阈值(WPT)算法提高图像质量。采用小波变换对含噪CT图像进行分解,其中近似部分采用小波变换滤波,细节部分采用自适应维纳滤波。采用水平相关的方法,利用最优线性插值收缩函数计算小波包树系数。利用小波包重构和反小波变换获得去噪图像。峰值信噪比(PSNR)的值作为图像视觉质量的度量。实验结果表明,该方法在去噪和边缘保持方面提高了图像的视觉质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信