{"title":"Large scale characterization of SRAM on infineon XMC microcontrollers as PUF","authors":"F. Wilde","doi":"10.1145/3031836.3031839","DOIUrl":null,"url":null,"abstract":"SRAM-based physical unclonable functions (SRAM PUFs) derive a device dependent secret from the start-up pattern of their memory cells and have shown very promising results in previous publications. This work presents a dataset measured on 144 Infineon XMC4500 microcontrollers containing 160 KiB of SRAM sampled 101 times each in 2015 and 2016. Analyses are done using state-of-the-art metrics by Maiti et al., Hori et al., and by custom inspections. In extensive comparison to previous work, this work is found to score best in average Reliability and Bit-Alias, match with previous top results in average Uniformity and still mid-range in Uniqueness. This confirms previous results that general purpose SRAM on microcontrollers is adequate for most PUF applications. To support further research into SRAM PUFs and their post-processing, the full dataset originating from this work will be made publicly available on the internet.","PeriodicalId":126518,"journal":{"name":"Proceedings of the Fourth Workshop on Cryptography and Security in Computing Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Workshop on Cryptography and Security in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3031836.3031839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
SRAM-based physical unclonable functions (SRAM PUFs) derive a device dependent secret from the start-up pattern of their memory cells and have shown very promising results in previous publications. This work presents a dataset measured on 144 Infineon XMC4500 microcontrollers containing 160 KiB of SRAM sampled 101 times each in 2015 and 2016. Analyses are done using state-of-the-art metrics by Maiti et al., Hori et al., and by custom inspections. In extensive comparison to previous work, this work is found to score best in average Reliability and Bit-Alias, match with previous top results in average Uniformity and still mid-range in Uniqueness. This confirms previous results that general purpose SRAM on microcontrollers is adequate for most PUF applications. To support further research into SRAM PUFs and their post-processing, the full dataset originating from this work will be made publicly available on the internet.